Merge branch 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (40 commits)
  tracing: Separate raw syscall from syscall tracer
  ring-buffer-benchmark: Add parameters to set produce/consumer priorities
  tracing, function tracer: Clean up strstrip() usage
  ring-buffer benchmark: Run producer/consumer threads at nice +19
  tracing: Remove the stale include/trace/power.h
  tracing: Only print objcopy version warning once from recordmcount
  tracing: Prevent build warning: 'ftrace_graph_buf' defined but not used
  ring-buffer: Move access to commit_page up into function used
  tracing: do not disable interrupts for trace_clock_local
  ring-buffer: Add multiple iterations between benchmark timestamps
  kprobes: Sanitize struct kretprobe_instance allocations
  tracing: Fix to use __always_unused attribute
  compiler: Introduce __always_unused
  tracing: Exit with error if a weak function is used in recordmcount.pl
  tracing: Move conditional into update_funcs() in recordmcount.pl
  tracing: Add regex for weak functions in recordmcount.pl
  tracing: Move mcount section search to front of loop in recordmcount.pl
  tracing: Fix objcopy revision check in recordmcount.pl
  tracing: Check absolute path of input file in recordmcount.pl
  tracing: Correct the check for number of arguments in recordmcount.pl
  ...
This commit is contained in:
Linus Torvalds 2009-12-05 09:53:36 -08:00
commit 96fa2b508d
28 changed files with 856 additions and 518 deletions

View file

@ -6,77 +6,93 @@
# all the offsets to the calls to mcount.
#
#
# What we want to end up with is a section in vmlinux called
# __mcount_loc that contains a list of pointers to all the
# call sites in the kernel that call mcount. Later on boot up, the kernel
# will read this list, save the locations and turn them into nops.
# When tracing or profiling is later enabled, these locations will then
# be converted back to pointers to some function.
# What we want to end up with this is that each object file will have a
# section called __mcount_loc that will hold the list of pointers to mcount
# callers. After final linking, the vmlinux will have within .init.data the
# list of all callers to mcount between __start_mcount_loc and __stop_mcount_loc.
# Later on boot up, the kernel will read this list, save the locations and turn
# them into nops. When tracing or profiling is later enabled, these locations
# will then be converted back to pointers to some function.
#
# This is no easy feat. This script is called just after the original
# object is compiled and before it is linked.
#
# The references to the call sites are offsets from the section of text
# that the call site is in. Hence, all functions in a section that
# has a call site to mcount, will have the offset from the beginning of
# the section and not the beginning of the function.
# When parse this object file using 'objdump', the references to the call
# sites are offsets from the section that the call site is in. Hence, all
# functions in a section that has a call site to mcount, will have the
# offset from the beginning of the section and not the beginning of the
# function.
#
# But where this section will reside finally in vmlinx is undetermined at
# this point. So we can't use this kind of offsets to record the final
# address of this call site.
#
# The trick is to change the call offset referring the start of a section to
# referring a function symbol in this section. During the link step, 'ld' will
# compute the final address according to the information we record.
#
# The trick is to find a way to record the beginning of the section.
# The way we do this is to look at the first function in the section
# which will also be the location of that section after final link.
# e.g.
#
# .section ".sched.text", "ax"
# .globl my_func
# my_func:
# [...]
# call mcount (offset: 0x5)
# func1:
# [...]
# call mcount (offset: 0x10)
# [...]
# ret
# other_func:
# .globl fun2
# func2: (offset: 0x20)
# [...]
# call mcount (offset: 0x1b)
# [...]
# ret
# func3:
# [...]
# call mcount (offset: 0x30)
# [...]
#
# Both relocation offsets for the mcounts in the above example will be
# offset from .sched.text. If we make another file called tmp.s with:
# offset from .sched.text. If we choose global symbol func2 as a reference and
# make another file called tmp.s with the new offsets:
#
# .section __mcount_loc
# .quad my_func + 0x5
# .quad my_func + 0x1b
# .quad func2 - 0x10
# .quad func2 + 0x10
#
# We can then compile this tmp.s into tmp.o, and link it to the original
# We can then compile this tmp.s into tmp.o, and link it back to the original
# object.
#
# But this gets hard if my_func is not globl (a static function).
# In such a case we have:
# In our algorithm, we will choose the first global function we meet in this
# section as the reference. But this gets hard if there is no global functions
# in this section. In such a case we have to select a local one. E.g. func1:
#
# .section ".sched.text", "ax"
# my_func:
# func1:
# [...]
# call mcount (offset: 0x5)
# call mcount (offset: 0x10)
# [...]
# ret
# other_func:
# func2:
# [...]
# call mcount (offset: 0x1b)
# call mcount (offset: 0x20)
# [...]
# .section "other.section"
#
# If we make the tmp.s the same as above, when we link together with
# the original object, we will end up with two symbols for my_func:
# the original object, we will end up with two symbols for func1:
# one local, one global. After final compile, we will end up with
# an undefined reference to my_func.
# an undefined reference to func1 or a wrong reference to another global
# func1 in other files.
#
# Since local objects can reference local variables, we need to find
# a way to make tmp.o reference the local objects of the original object
# file after it is linked together. To do this, we convert the my_func
# file after it is linked together. To do this, we convert func1
# into a global symbol before linking tmp.o. Then after we link tmp.o
# we will only have a single symbol for my_func that is global.
# We can convert my_func back into a local symbol and we are done.
# we will only have a single symbol for func1 that is global.
# We can convert func1 back into a local symbol and we are done.
#
# Here are the steps we take:
#
# 1) Record all the local symbols by using 'nm'
# 1) Record all the local and weak symbols by using 'nm'
# 2) Use objdump to find all the call site offsets and sections for
# mcount.
# 3) Compile the list into its own object.
@ -86,10 +102,8 @@
# 6) Link together this new object with the list object.
# 7) Convert the local functions back to local symbols and rename
# the result as the original object.
# End.
# 8) Link the object with the list object.
# 9) Move the result back to the original object.
# End.
#
use strict;
@ -99,7 +113,7 @@ $P =~ s@.*/@@g;
my $V = '0.1';
if ($#ARGV < 7) {
if ($#ARGV != 10) {
print "usage: $P arch bits objdump objcopy cc ld nm rm mv is_module inputfile\n";
print "version: $V\n";
exit(1);
@ -109,7 +123,7 @@ my ($arch, $bits, $objdump, $objcopy, $cc,
$ld, $nm, $rm, $mv, $is_module, $inputfile) = @ARGV;
# This file refers to mcount and shouldn't be ftraced, so lets' ignore it
if ($inputfile eq "kernel/trace/ftrace.o") {
if ($inputfile =~ m,kernel/trace/ftrace\.o$,) {
exit(0);
}
@ -119,6 +133,7 @@ my %text_sections = (
".sched.text" => 1,
".spinlock.text" => 1,
".irqentry.text" => 1,
".text.unlikely" => 1,
);
$objdump = "objdump" if ((length $objdump) == 0);
@ -137,13 +152,47 @@ my %weak; # List of weak functions
my %convert; # List of local functions used that needs conversion
my $type;
my $nm_regex; # Find the local functions (return function)
my $local_regex; # Match a local function (return function)
my $weak_regex; # Match a weak function (return function)
my $section_regex; # Find the start of a section
my $function_regex; # Find the name of a function
# (return offset and func name)
my $mcount_regex; # Find the call site to mcount (return offset)
my $alignment; # The .align value to use for $mcount_section
my $section_type; # Section header plus possible alignment command
my $can_use_local = 0; # If we can use local function references
# Shut up recordmcount if user has older objcopy
my $quiet_recordmcount = ".tmp_quiet_recordmcount";
my $print_warning = 1;
$print_warning = 0 if ( -f $quiet_recordmcount);
##
# check_objcopy - whether objcopy supports --globalize-symbols
#
# --globalize-symbols came out in 2.17, we must test the version
# of objcopy, and if it is less than 2.17, then we can not
# record local functions.
sub check_objcopy
{
open (IN, "$objcopy --version |") or die "error running $objcopy";
while (<IN>) {
if (/objcopy.*\s(\d+)\.(\d+)/) {
$can_use_local = 1 if ($1 > 2 || ($1 == 2 && $2 >= 17));
last;
}
}
close (IN);
if (!$can_use_local && $print_warning) {
print STDERR "WARNING: could not find objcopy version or version " .
"is less than 2.17.\n" .
"\tLocal function references are disabled.\n";
open (QUIET, ">$quiet_recordmcount");
printf QUIET "Disables the warning from recordmcount.pl\n";
close QUIET;
}
}
if ($arch eq "x86") {
if ($bits == 64) {
@ -157,7 +206,8 @@ if ($arch eq "x86") {
# We base the defaults off of i386, the other archs may
# feel free to change them in the below if statements.
#
$nm_regex = "^[0-9a-fA-F]+\\s+t\\s+(\\S+)";
$local_regex = "^[0-9a-fA-F]+\\s+t\\s+(\\S+)";
$weak_regex = "^[0-9a-fA-F]+\\s+([wW])\\s+(\\S+)";
$section_regex = "Disassembly of section\\s+(\\S+):";
$function_regex = "^([0-9a-fA-F]+)\\s+<(.*?)>:";
$mcount_regex = "^\\s*([0-9a-fA-F]+):.*\\smcount\$";
@ -206,7 +256,7 @@ if ($arch eq "x86_64") {
$cc .= " -m32";
} elsif ($arch eq "powerpc") {
$nm_regex = "^[0-9a-fA-F]+\\s+t\\s+(\\.?\\S+)";
$local_regex = "^[0-9a-fA-F]+\\s+t\\s+(\\.?\\S+)";
$function_regex = "^([0-9a-fA-F]+)\\s+<(\\.?.*?)>:";
$mcount_regex = "^\\s*([0-9a-fA-F]+):.*\\s\\.?_mcount\$";
@ -278,44 +328,17 @@ if ($filename =~ m,^(.*)(\.\S),) {
my $mcount_s = $dirname . "/.tmp_mc_" . $prefix . ".s";
my $mcount_o = $dirname . "/.tmp_mc_" . $prefix . ".o";
#
# --globalize-symbols came out in 2.17, we must test the version
# of objcopy, and if it is less than 2.17, then we can not
# record local functions.
my $use_locals = 01;
my $local_warn_once = 0;
my $found_version = 0;
open (IN, "$objcopy --version |") || die "error running $objcopy";
while (<IN>) {
if (/objcopy.*\s(\d+)\.(\d+)/) {
my $major = $1;
my $minor = $2;
$found_version = 1;
if ($major < 2 ||
($major == 2 && $minor < 17)) {
$use_locals = 0;
}
last;
}
}
close (IN);
if (!$found_version) {
print STDERR "WARNING: could not find objcopy version.\n" .
"\tDisabling local function references.\n";
}
check_objcopy();
#
# Step 1: find all the local (static functions) and weak symbols.
# 't' is local, 'w/W' is weak (we never use a weak function)
# 't' is local, 'w/W' is weak
#
open (IN, "$nm $inputfile|") || die "error running $nm";
while (<IN>) {
if (/$nm_regex/) {
if (/$local_regex/) {
$locals{$1} = 1;
} elsif (/^[0-9a-fA-F]+\s+([wW])\s+(\S+)/) {
} elsif (/$weak_regex/) {
$weak{$2} = $1;
}
}
@ -333,26 +356,20 @@ my $offset = 0; # offset of ref_func to section beginning
#
sub update_funcs
{
return if ($#offsets < 0);
return unless ($ref_func and @offsets);
defined($ref_func) || die "No function to reference";
# A section only had a weak function, to represent it.
# Unfortunately, a weak function may be overwritten by another
# function of the same name, making all these offsets incorrect.
# To be safe, we simply print a warning and bail.
# Sanity check on weak function. A weak function may be overwritten by
# another function of the same name, making all these offsets incorrect.
if (defined $weak{$ref_func}) {
print STDERR
"$inputfile: WARNING: referencing weak function" .
die "$inputfile: ERROR: referencing weak function" .
" $ref_func for mcount\n";
return;
}
# is this function static? If so, note this fact.
if (defined $locals{$ref_func}) {
# only use locals if objcopy supports globalize-symbols
if (!$use_locals) {
if (!$can_use_local) {
return;
}
$convert{$ref_func} = 1;
@ -378,9 +395,27 @@ open(IN, "$objdump -hdr $inputfile|") || die "error running $objdump";
my $text;
# read headers first
my $read_headers = 1;
while (<IN>) {
if ($read_headers && /$mcount_section/) {
#
# Somehow the make process can execute this script on an
# object twice. If it does, we would duplicate the mcount
# section and it will cause the function tracer self test
# to fail. Check if the mcount section exists, and if it does,
# warn and exit.
#
print STDERR "ERROR: $mcount_section already in $inputfile\n" .
"\tThis may be an indication that your build is corrupted.\n" .
"\tDelete $inputfile and try again. If the same object file\n" .
"\tstill causes an issue, then disable CONFIG_DYNAMIC_FTRACE.\n";
exit(-1);
}
# is it a section?
if (/$section_regex/) {
$read_headers = 0;
@ -392,7 +427,7 @@ while (<IN>) {
$read_function = 0;
}
# print out any recorded offsets
update_funcs() if (defined($ref_func));
update_funcs();
# reset all markers and arrays
$text_found = 0;
@ -421,21 +456,7 @@ while (<IN>) {
$offset = hex $1;
}
}
} elsif ($read_headers && /$mcount_section/) {
#
# Somehow the make process can execute this script on an
# object twice. If it does, we would duplicate the mcount
# section and it will cause the function tracer self test
# to fail. Check if the mcount section exists, and if it does,
# warn and exit.
#
print STDERR "ERROR: $mcount_section already in $inputfile\n" .
"\tThis may be an indication that your build is corrupted.\n" .
"\tDelete $inputfile and try again. If the same object file\n" .
"\tstill causes an issue, then disable CONFIG_DYNAMIC_FTRACE.\n";
exit(-1);
}
# is this a call site to mcount? If so, record it to print later
if ($text_found && /$mcount_regex/) {
$offsets[$#offsets + 1] = hex $1;
@ -443,7 +464,7 @@ while (<IN>) {
}
# dump out anymore offsets that may have been found
update_funcs() if (defined($ref_func));
update_funcs();
# If we did not find any mcount callers, we are done (do nothing).
if (!$opened) {