remove SWRITE* I/O types

These flags aren't real I/O types, but tell ll_rw_block to always
lock the buffer instead of giving up on a failed trylock.

Instead add a new write_dirty_buffer helper that implements this semantic
and use it from the existing SWRITE* callers.  Note that the ll_rw_block
code had a bug where it didn't promote WRITE_SYNC_PLUG properly, which
this patch fixes.

In the ufs code clean up the helper that used to call ll_rw_block
to mirror sync_dirty_buffer, which is the function it implements for
compound buffers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This commit is contained in:
Christoph Hellwig 2010-08-11 17:06:24 +02:00 committed by Al Viro
parent 87e99511ea
commit 9cb569d601
16 changed files with 73 additions and 94 deletions

View file

@ -770,11 +770,12 @@ static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
spin_unlock(lock);
/*
* Ensure any pending I/O completes so that
* ll_rw_block() actually writes the current
* contents - it is a noop if I/O is still in
* flight on potentially older contents.
* write_dirty_buffer() actually writes the
* current contents - it is a noop if I/O is
* still in flight on potentially older
* contents.
*/
ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
write_dirty_buffer(bh, WRITE_SYNC_PLUG);
/*
* Kick off IO for the previous mapping. Note
@ -2949,22 +2950,21 @@ EXPORT_SYMBOL(submit_bh);
/**
* ll_rw_block: low-level access to block devices (DEPRECATED)
* @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
* @rw: whether to %READ or %WRITE or maybe %READA (readahead)
* @nr: number of &struct buffer_heads in the array
* @bhs: array of pointers to &struct buffer_head
*
* ll_rw_block() takes an array of pointers to &struct buffer_heads, and
* requests an I/O operation on them, either a %READ or a %WRITE. The third
* %SWRITE is like %WRITE only we make sure that the *current* data in buffers
* are sent to disk. The fourth %READA option is described in the documentation
* for generic_make_request() which ll_rw_block() calls.
* %READA option is described in the documentation for generic_make_request()
* which ll_rw_block() calls.
*
* This function drops any buffer that it cannot get a lock on (with the
* BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
* clean when doing a write request, and any buffer that appears to be
* up-to-date when doing read request. Further it marks as clean buffers that
* are processed for writing (the buffer cache won't assume that they are
* actually clean until the buffer gets unlocked).
* BH_Lock state bit), any buffer that appears to be clean when doing a write
* request, and any buffer that appears to be up-to-date when doing read
* request. Further it marks as clean buffers that are processed for
* writing (the buffer cache won't assume that they are actually clean
* until the buffer gets unlocked).
*
* ll_rw_block sets b_end_io to simple completion handler that marks
* the buffer up-to-date (if approriate), unlocks the buffer and wakes
@ -2980,20 +2980,13 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
lock_buffer(bh);
else if (!trylock_buffer(bh))
if (!trylock_buffer(bh))
continue;
if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
rw == SWRITE_SYNC_PLUG) {
if (rw == WRITE) {
if (test_clear_buffer_dirty(bh)) {
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
if (rw == SWRITE_SYNC)
submit_bh(WRITE_SYNC, bh);
else
submit_bh(WRITE, bh);
submit_bh(WRITE, bh);
continue;
}
} else {
@ -3009,6 +3002,19 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
}
EXPORT_SYMBOL(ll_rw_block);
void write_dirty_buffer(struct buffer_head *bh, int rw)
{
lock_buffer(bh);
if (!test_clear_buffer_dirty(bh)) {
unlock_buffer(bh);
return;
}
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
submit_bh(rw, bh);
}
EXPORT_SYMBOL(write_dirty_buffer);
/*
* For a data-integrity writeout, we need to wait upon any in-progress I/O
* and then start new I/O and then wait upon it. The caller must have a ref on