mirror of
https://github.com/Fishwaldo/Star64_linux.git
synced 2025-06-20 21:51:05 +00:00
sched/rtmutex: Refactor rt_mutex_setprio()
With the introduction of SCHED_DEADLINE the whole notion that priority is a single number is gone, therefore the @prio argument to rt_mutex_setprio() doesn't make sense anymore. So rework the code to pass a pi_task instead. Note this also fixes a problem with pi_top_task caching; previously we would not set the pointer (call rt_mutex_update_top_task) if the priority didn't change, this could lead to a stale pointer. As for the XXX, I think its fine to use pi_task->prio, because if it differs from waiter->prio, a PI chain update is immenent. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: juri.lelli@arm.com Cc: bigeasy@linutronix.de Cc: xlpang@redhat.com Cc: rostedt@goodmis.org Cc: mathieu.desnoyers@efficios.com Cc: jdesfossez@efficios.com Cc: bristot@redhat.com Link: http://lkml.kernel.org/r/20170323150216.303827095@infradead.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
aa2bfe5536
commit
acd58620e4
3 changed files with 91 additions and 111 deletions
|
@ -322,67 +322,16 @@ rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
|
|||
RB_CLEAR_NODE(&waiter->pi_tree_entry);
|
||||
}
|
||||
|
||||
/*
|
||||
* Must hold both p->pi_lock and task_rq(p)->lock.
|
||||
*/
|
||||
void rt_mutex_update_top_task(struct task_struct *p)
|
||||
static void rt_mutex_adjust_prio(struct task_struct *p)
|
||||
{
|
||||
if (!task_has_pi_waiters(p)) {
|
||||
p->pi_top_task = NULL;
|
||||
return;
|
||||
}
|
||||
struct task_struct *pi_task = NULL;
|
||||
|
||||
p->pi_top_task = task_top_pi_waiter(p)->task;
|
||||
}
|
||||
lockdep_assert_held(&p->pi_lock);
|
||||
|
||||
/*
|
||||
* Calculate task priority from the waiter tree priority
|
||||
*
|
||||
* Return task->normal_prio when the waiter tree is empty or when
|
||||
* the waiter is not allowed to do priority boosting
|
||||
*/
|
||||
int rt_mutex_getprio(struct task_struct *task)
|
||||
{
|
||||
if (likely(!task_has_pi_waiters(task)))
|
||||
return task->normal_prio;
|
||||
if (task_has_pi_waiters(p))
|
||||
pi_task = task_top_pi_waiter(p)->task;
|
||||
|
||||
return min(task_top_pi_waiter(task)->prio,
|
||||
task->normal_prio);
|
||||
}
|
||||
|
||||
/*
|
||||
* Must hold either p->pi_lock or task_rq(p)->lock.
|
||||
*/
|
||||
struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
|
||||
{
|
||||
return task->pi_top_task;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called by sched_setscheduler() to get the priority which will be
|
||||
* effective after the change.
|
||||
*/
|
||||
int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
|
||||
{
|
||||
struct task_struct *top_task = rt_mutex_get_top_task(task);
|
||||
|
||||
if (!top_task)
|
||||
return newprio;
|
||||
|
||||
return min(top_task->prio, newprio);
|
||||
}
|
||||
|
||||
/*
|
||||
* Adjust the priority of a task, after its pi_waiters got modified.
|
||||
*
|
||||
* This can be both boosting and unboosting. task->pi_lock must be held.
|
||||
*/
|
||||
static void __rt_mutex_adjust_prio(struct task_struct *task)
|
||||
{
|
||||
int prio = rt_mutex_getprio(task);
|
||||
|
||||
if (task->prio != prio || dl_prio(prio))
|
||||
rt_mutex_setprio(task, prio);
|
||||
rt_mutex_setprio(p, pi_task);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -742,7 +691,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
*/
|
||||
rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
|
||||
rt_mutex_enqueue_pi(task, waiter);
|
||||
__rt_mutex_adjust_prio(task);
|
||||
rt_mutex_adjust_prio(task);
|
||||
|
||||
} else if (prerequeue_top_waiter == waiter) {
|
||||
/*
|
||||
|
@ -758,7 +707,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
rt_mutex_dequeue_pi(task, waiter);
|
||||
waiter = rt_mutex_top_waiter(lock);
|
||||
rt_mutex_enqueue_pi(task, waiter);
|
||||
__rt_mutex_adjust_prio(task);
|
||||
rt_mutex_adjust_prio(task);
|
||||
} else {
|
||||
/*
|
||||
* Nothing changed. No need to do any priority
|
||||
|
@ -966,7 +915,7 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
|
|||
return -EDEADLK;
|
||||
|
||||
raw_spin_lock(&task->pi_lock);
|
||||
__rt_mutex_adjust_prio(task);
|
||||
rt_mutex_adjust_prio(task);
|
||||
waiter->task = task;
|
||||
waiter->lock = lock;
|
||||
waiter->prio = task->prio;
|
||||
|
@ -988,7 +937,7 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
|
|||
rt_mutex_dequeue_pi(owner, top_waiter);
|
||||
rt_mutex_enqueue_pi(owner, waiter);
|
||||
|
||||
__rt_mutex_adjust_prio(owner);
|
||||
rt_mutex_adjust_prio(owner);
|
||||
if (owner->pi_blocked_on)
|
||||
chain_walk = 1;
|
||||
} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
|
||||
|
@ -1040,13 +989,14 @@ static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
|
|||
waiter = rt_mutex_top_waiter(lock);
|
||||
|
||||
/*
|
||||
* Remove it from current->pi_waiters. We do not adjust a
|
||||
* possible priority boost right now. We execute wakeup in the
|
||||
* boosted mode and go back to normal after releasing
|
||||
* lock->wait_lock.
|
||||
* Remove it from current->pi_waiters and deboost.
|
||||
*
|
||||
* We must in fact deboost here in order to ensure we call
|
||||
* rt_mutex_setprio() to update p->pi_top_task before the
|
||||
* task unblocks.
|
||||
*/
|
||||
rt_mutex_dequeue_pi(current, waiter);
|
||||
__rt_mutex_adjust_prio(current);
|
||||
rt_mutex_adjust_prio(current);
|
||||
|
||||
/*
|
||||
* As we are waking up the top waiter, and the waiter stays
|
||||
|
@ -1058,9 +1008,19 @@ static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
|
|||
*/
|
||||
lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
|
||||
|
||||
raw_spin_unlock(¤t->pi_lock);
|
||||
|
||||
/*
|
||||
* We deboosted before waking the top waiter task such that we don't
|
||||
* run two tasks with the 'same' priority (and ensure the
|
||||
* p->pi_top_task pointer points to a blocked task). This however can
|
||||
* lead to priority inversion if we would get preempted after the
|
||||
* deboost but before waking our donor task, hence the preempt_disable()
|
||||
* before unlock.
|
||||
*
|
||||
* Pairs with preempt_enable() in rt_mutex_postunlock();
|
||||
*/
|
||||
preempt_disable();
|
||||
wake_q_add(wake_q, waiter->task);
|
||||
raw_spin_unlock(¤t->pi_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1095,7 +1055,7 @@ static void remove_waiter(struct rt_mutex *lock,
|
|||
if (rt_mutex_has_waiters(lock))
|
||||
rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
|
||||
|
||||
__rt_mutex_adjust_prio(owner);
|
||||
rt_mutex_adjust_prio(owner);
|
||||
|
||||
/* Store the lock on which owner is blocked or NULL */
|
||||
next_lock = task_blocked_on_lock(owner);
|
||||
|
@ -1134,8 +1094,7 @@ void rt_mutex_adjust_pi(struct task_struct *task)
|
|||
raw_spin_lock_irqsave(&task->pi_lock, flags);
|
||||
|
||||
waiter = task->pi_blocked_on;
|
||||
if (!waiter || (waiter->prio == task->prio &&
|
||||
!dl_prio(task->prio))) {
|
||||
if (!waiter || (waiter->prio == task->prio && !dl_prio(task->prio))) {
|
||||
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
|
||||
return;
|
||||
}
|
||||
|
@ -1389,17 +1348,6 @@ static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
|
|||
* Queue the next waiter for wakeup once we release the wait_lock.
|
||||
*/
|
||||
mark_wakeup_next_waiter(wake_q, lock);
|
||||
|
||||
/*
|
||||
* We should deboost before waking the top waiter task such that
|
||||
* we don't run two tasks with the 'same' priority. This however
|
||||
* can lead to prio-inversion if we would get preempted after
|
||||
* the deboost but before waking our high-prio task, hence the
|
||||
* preempt_disable before unlock. Pairs with preempt_enable() in
|
||||
* rt_mutex_postunlock();
|
||||
*/
|
||||
preempt_disable();
|
||||
|
||||
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
|
||||
|
||||
return true; /* call rt_mutex_postunlock() */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue