Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 platform updates from Ingo Molnar:
 "The main change is the addition of SGI/UV4 support"

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
  x86/platform/UV: Fix incorrect nodes and pnodes for cpuless and memoryless nodes
  x86/platform/UV: Remove Obsolete GRU MMR address translation
  x86/platform/UV: Update physical address conversions for UV4
  x86/platform/UV: Build GAM reference tables
  x86/platform/UV: Support UV4 socket address changes
  x86/platform/UV: Add obtaining GAM Range Table from UV BIOS
  x86/platform/UV: Add UV4 addressing discovery function
  x86/platform/UV: Fold blade info into per node hub info structs
  x86/platform/UV: Allocate common per node hub info structs on local node
  x86/platform/UV: Move blade local processor ID to the per cpu info struct
  x86/platform/UV: Move scir info to the per cpu info struct
  x86/platform/UV: Create per cpu info structs to replace per hub info structs
  x86/platform/UV: Update MMIOH setup function to work for both UV3 and UV4
  x86/platform/UV: Clean up redunduncies after merge of UV4 MMR definitions
  x86/platform/UV: Add UV4 Specific MMR definitions
  x86/platform/UV: Prep for UV4 MMR updates
  x86/platform/UV: Add UV MMR Illegal Access Function
  x86/platform/UV: Add UV4 Specific Defines
  x86/platform/UV: Add UV Architecture Defines
  x86/platform/UV: Add Initial UV4 definitions
  ...
This commit is contained in:
Linus Torvalds 2016-05-16 16:46:03 -07:00
commit bc231d9ede
12 changed files with 2903 additions and 801 deletions

View file

@ -131,6 +131,7 @@ parameter is applicable:
More X86-64 boot options can be found in More X86-64 boot options can be found in
Documentation/x86/x86_64/boot-options.txt . Documentation/x86/x86_64/boot-options.txt .
X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64) X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled XEN Xen support is enabled
In addition, the following text indicates that the option: In addition, the following text indicates that the option:
@ -542,6 +543,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Format: <int> (must be >=0) Format: <int> (must be >=0)
Default: 64 Default: 64
bau= [X86_UV] Enable the BAU on SGI UV. The default
behavior is to disable the BAU (i.e. bau=0).
Format: { "0" | "1" }
0 - Disable the BAU.
1 - Enable the BAU.
unset - Disable the BAU.
baycom_epp= [HW,AX25] baycom_epp= [HW,AX25]
Format: <io>,<mode> Format: <io>,<mode>

View file

@ -17,27 +17,6 @@ static inline unsigned int get_bios_ebda(void)
return address; /* 0 means none */ return address; /* 0 means none */
} }
/*
* Return the sanitized length of the EBDA in bytes, if it exists.
*/
static inline unsigned int get_bios_ebda_length(void)
{
unsigned int address;
unsigned int length;
address = get_bios_ebda();
if (!address)
return 0;
/* EBDA length is byte 0 of the EBDA (stored in KiB) */
length = *(unsigned char *)phys_to_virt(address);
length <<= 10;
/* Trim the length if it extends beyond 640KiB */
length = min_t(unsigned int, (640 * 1024) - address, length);
return length;
}
void reserve_ebda_region(void); void reserve_ebda_region(void);
#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION

View file

@ -51,15 +51,66 @@ enum {
BIOS_STATUS_UNAVAIL = -EBUSY BIOS_STATUS_UNAVAIL = -EBUSY
}; };
/* Address map parameters */
struct uv_gam_parameters {
u64 mmr_base;
u64 gru_base;
u8 mmr_shift; /* Convert PNode to MMR space offset */
u8 gru_shift; /* Convert PNode to GRU space offset */
u8 gpa_shift; /* Size of offset field in GRU phys addr */
u8 unused1;
};
/* UV_TABLE_GAM_RANGE_ENTRY values */
#define UV_GAM_RANGE_TYPE_UNUSED 0 /* End of table */
#define UV_GAM_RANGE_TYPE_RAM 1 /* Normal RAM */
#define UV_GAM_RANGE_TYPE_NVRAM 2 /* Non-volatile memory */
#define UV_GAM_RANGE_TYPE_NV_WINDOW 3 /* NVMDIMM block window */
#define UV_GAM_RANGE_TYPE_NV_MAILBOX 4 /* NVMDIMM mailbox */
#define UV_GAM_RANGE_TYPE_HOLE 5 /* Unused address range */
#define UV_GAM_RANGE_TYPE_MAX 6
/* The structure stores PA bits 56:26, for 64MB granularity */
#define UV_GAM_RANGE_SHFT 26 /* 64MB */
struct uv_gam_range_entry {
char type; /* Entry type: GAM_RANGE_TYPE_UNUSED, etc. */
char unused1;
u16 nasid; /* HNasid */
u16 sockid; /* Socket ID, high bits of APIC ID */
u16 pnode; /* Index to MMR and GRU spaces */
u32 pxm; /* ACPI proximity domain number */
u32 limit; /* PA bits 56:26 (UV_GAM_RANGE_SHFT) */
};
#define UV_SYSTAB_SIG "UVST"
#define UV_SYSTAB_VERSION_1 1 /* UV1/2/3 BIOS version */
#define UV_SYSTAB_VERSION_UV4 0x400 /* UV4 BIOS base version */
#define UV_SYSTAB_VERSION_UV4_1 0x401 /* + gpa_shift */
#define UV_SYSTAB_VERSION_UV4_2 0x402 /* + TYPE_NVRAM/WINDOW/MBOX */
#define UV_SYSTAB_VERSION_UV4_LATEST UV_SYSTAB_VERSION_UV4_2
#define UV_SYSTAB_TYPE_UNUSED 0 /* End of table (offset == 0) */
#define UV_SYSTAB_TYPE_GAM_PARAMS 1 /* GAM PARAM conversions */
#define UV_SYSTAB_TYPE_GAM_RNG_TBL 2 /* GAM entry table */
#define UV_SYSTAB_TYPE_MAX 3
/* /*
* The UV system table describes specific firmware * The UV system table describes specific firmware
* capabilities available to the Linux kernel at runtime. * capabilities available to the Linux kernel at runtime.
*/ */
struct uv_systab { struct uv_systab {
char signature[4]; /* must be "UVST" */ char signature[4]; /* must be UV_SYSTAB_SIG */
u32 revision; /* distinguish different firmware revs */ u32 revision; /* distinguish different firmware revs */
u64 function; /* BIOS runtime callback function ptr */ u64 function; /* BIOS runtime callback function ptr */
u32 size; /* systab size (starting with _VERSION_UV4) */
struct {
u32 type:8; /* type of entry */
u32 offset:24; /* byte offset from struct start to entry */
} entry[1]; /* additional entries follow */
}; };
extern struct uv_systab *uv_systab;
/* (... end of definitions from UV BIOS ...) */
enum { enum {
BIOS_FREQ_BASE_PLATFORM = 0, BIOS_FREQ_BASE_PLATFORM = 0,
@ -99,7 +150,11 @@ extern s64 uv_bios_change_memprotect(u64, u64, enum uv_memprotect);
extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *); extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *);
extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus); extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus);
#ifdef CONFIG_EFI
extern void uv_bios_init(void); extern void uv_bios_init(void);
#else
void uv_bios_init(void) { }
#endif
extern unsigned long sn_rtc_cycles_per_second; extern unsigned long sn_rtc_cycles_per_second;
extern int uv_type; extern int uv_type;
@ -107,7 +162,7 @@ extern long sn_partition_id;
extern long sn_coherency_id; extern long sn_coherency_id;
extern long sn_region_size; extern long sn_region_size;
extern long system_serial_number; extern long system_serial_number;
#define partition_coherence_id() (sn_coherency_id) #define uv_partition_coherence_id() (sn_coherency_id)
extern struct kobject *sgi_uv_kobj; /* /sys/firmware/sgi_uv */ extern struct kobject *sgi_uv_kobj; /* /sys/firmware/sgi_uv */

View file

@ -598,7 +598,7 @@ struct bau_control {
int timeout_tries; int timeout_tries;
int ipi_attempts; int ipi_attempts;
int conseccompletes; int conseccompletes;
short nobau; bool nobau;
short baudisabled; short baudisabled;
short cpu; short cpu;
short osnode; short osnode;

View file

@ -16,9 +16,11 @@
#include <linux/percpu.h> #include <linux/percpu.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/topology.h>
#include <asm/types.h> #include <asm/types.h>
#include <asm/percpu.h> #include <asm/percpu.h>
#include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_mmrs.h>
#include <asm/uv/bios.h>
#include <asm/irq_vectors.h> #include <asm/irq_vectors.h>
#include <asm/io_apic.h> #include <asm/io_apic.h>
@ -103,7 +105,6 @@
* processor APICID register. * processor APICID register.
*/ */
/* /*
* Maximum number of bricks in all partitions and in all coherency domains. * Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It * This is the total number of bricks accessible in the numalink fabric. It
@ -127,6 +128,7 @@
*/ */
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
/* System Controller Interface Reg info */
struct uv_scir_s { struct uv_scir_s {
struct timer_list timer; struct timer_list timer;
unsigned long offset; unsigned long offset;
@ -137,71 +139,173 @@ struct uv_scir_s {
unsigned char enabled; unsigned char enabled;
}; };
/* GAM (globally addressed memory) range table */
struct uv_gam_range_s {
u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
u16 nasid; /* node's global physical address */
s8 base; /* entry index of node's base addr */
u8 reserved;
};
/* /*
* The following defines attributes of the HUB chip. These attributes are * The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in the per-cpu data areas of each cpu. * frequently referenced and are kept in a common per hub struct.
* They are kept together in a struct to minimize cache misses. * After setup, the struct is read only, so it should be readily
* available in the L3 cache on the cpu socket for the node.
*/ */
struct uv_hub_info_s { struct uv_hub_info_s {
unsigned long global_mmr_base; unsigned long global_mmr_base;
unsigned long global_mmr_shift;
unsigned long gpa_mask; unsigned long gpa_mask;
unsigned int gnode_extra; unsigned short *socket_to_node;
unsigned short *socket_to_pnode;
unsigned short *pnode_to_socket;
struct uv_gam_range_s *gr_table;
unsigned short min_socket;
unsigned short min_pnode;
unsigned char m_val;
unsigned char n_val;
unsigned char gr_table_len;
unsigned char hub_revision; unsigned char hub_revision;
unsigned char apic_pnode_shift; unsigned char apic_pnode_shift;
unsigned char gpa_shift;
unsigned char m_shift; unsigned char m_shift;
unsigned char n_lshift; unsigned char n_lshift;
unsigned int gnode_extra;
unsigned long gnode_upper; unsigned long gnode_upper;
unsigned long lowmem_remap_top; unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base; unsigned long lowmem_remap_base;
unsigned long global_gru_base;
unsigned long global_gru_shift;
unsigned short pnode; unsigned short pnode;
unsigned short pnode_mask; unsigned short pnode_mask;
unsigned short coherency_domain_number; unsigned short coherency_domain_number;
unsigned short numa_blade_id; unsigned short numa_blade_id;
unsigned char blade_processor_id; unsigned short nr_possible_cpus;
unsigned char m_val; unsigned short nr_online_cpus;
unsigned char n_val; short memory_nid;
struct uv_scir_s scir;
}; };
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); /* CPU specific info with a pointer to the hub common info struct */
#define uv_hub_info this_cpu_ptr(&__uv_hub_info) struct uv_cpu_info_s {
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) void *p_uv_hub_info;
unsigned char blade_cpu_id;
struct uv_scir_s scir;
};
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
#define uv_scir_info (&uv_cpu_info->scir)
#define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{
return (struct uv_hub_info_s *)__uv_hub_info_list[node];
}
static inline struct uv_hub_info_s *_uv_hub_info(void)
{
return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
}
#define uv_hub_info _uv_hub_info()
static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
{
return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
}
#define UV_HUB_INFO_VERSION 0x7150
extern int uv_hub_info_version(void);
static inline int uv_hub_info_check(int version)
{
if (uv_hub_info_version() == version)
return 0;
pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
uv_hub_info_version(), version);
BUG(); /* Catastrophic - cannot continue on unknown UV system */
}
#define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
/* /*
* Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2 * HUB revision ranges for each UV HUB architecture.
* hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
* This is a software convention - NOT the hardware revision numbers in * This is a software convention - NOT the hardware revision numbers in
* the hub chip. * the hub chip.
*/ */
#define UV1_HUB_REVISION_BASE 1 #define UV1_HUB_REVISION_BASE 1
#define UV2_HUB_REVISION_BASE 3 #define UV2_HUB_REVISION_BASE 3
#define UV3_HUB_REVISION_BASE 5 #define UV3_HUB_REVISION_BASE 5
#define UV4_HUB_REVISION_BASE 7
#ifdef UV1_HUB_IS_SUPPORTED
static inline int is_uv1_hub(void) static inline int is_uv1_hub(void)
{ {
return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE; return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
} }
#else
static inline int is_uv1_hub(void)
{
return 0;
}
#endif
#ifdef UV2_HUB_IS_SUPPORTED
static inline int is_uv2_hub(void) static inline int is_uv2_hub(void)
{ {
return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) && return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE)); (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
} }
#else
static inline int is_uv2_hub(void)
{
return 0;
}
#endif
#ifdef UV3_HUB_IS_SUPPORTED
static inline int is_uv3_hub(void) static inline int is_uv3_hub(void)
{ {
return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE; return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
}
#else
static inline int is_uv3_hub(void)
{
return 0;
}
#endif
#ifdef UV4_HUB_IS_SUPPORTED
static inline int is_uv4_hub(void)
{
return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
}
#else
static inline int is_uv4_hub(void)
{
return 0;
}
#endif
static inline int is_uvx_hub(void)
{
if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
return uv_hub_info->hub_revision;
return 0;
} }
static inline int is_uv_hub(void) static inline int is_uv_hub(void)
{ {
#ifdef UV1_HUB_IS_SUPPORTED
return uv_hub_info->hub_revision; return uv_hub_info->hub_revision;
} #endif
return is_uvx_hub();
/* code common to uv2 and uv3 only */
static inline int is_uvx_hub(void)
{
return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
} }
union uvh_apicid { union uvh_apicid {
@ -243,24 +347,42 @@ union uvh_apicid {
#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \ #define UV4_LOCAL_MMR_BASE 0xfa000000UL
(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \ #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
UV3_LOCAL_MMR_BASE)) #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\ #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
UV3_GLOBAL_MMR32_BASE)) #define UV_LOCAL_MMR_BASE ( \
#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \ is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \ is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
UV3_LOCAL_MMR_SIZE)) is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\ /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
UV3_GLOBAL_MMR32_SIZE)) #define UV_GLOBAL_MMR32_BASE ( \
is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
#define UV_LOCAL_MMR_SIZE ( \
is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
#define UV_GLOBAL_MMR32_SIZE ( \
is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_GRU_MMR_BASE 0x4000000 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
#define UV_GLOBAL_MMR32_PNODE_SHIFT 15 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
#define UV_GLOBAL_MMR64_PNODE_SHIFT 26 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
#define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
@ -307,18 +429,74 @@ union uvh_apicid {
* between socket virtual and socket physical addresses. * between socket virtual and socket physical addresses.
*/ */
/* global bits offset - number of local address bits in gpa for this UV arch */
static inline unsigned int uv_gpa_shift(void)
{
return uv_hub_info->gpa_shift;
}
#define _uv_gpa_shift
/* Find node that has the address range that contains global address */
static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_hub_info->gr_table;
unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
int i, num = uv_hub_info->gr_table_len;
if (gr) {
for (i = 0; i < num; i++, gr++) {
if (pal < gr->limit)
return gr;
}
}
pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
BUG();
}
/* Return base address of node that contains global address */
static inline unsigned long uv_gam_range_base(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_gam_range(pa);
int base = gr->base;
if (base < 0)
return 0UL;
return uv_hub_info->gr_table[base].limit;
}
/* socket phys RAM --> UV global NASID (UV4+) */
static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
{
return uv_gam_range(paddr)->nasid;
}
#define _uv_soc_phys_ram_to_nasid
/* socket virtual --> UV global NASID (UV4+) */
static inline unsigned long uv_gpa_nasid(void *v)
{
return uv_soc_phys_ram_to_nasid(__pa(v));
}
/* socket phys RAM --> UV global physical address */ /* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{ {
unsigned int m_val = uv_hub_info->m_val;
if (paddr < uv_hub_info->lowmem_remap_top) if (paddr < uv_hub_info->lowmem_remap_top)
paddr |= uv_hub_info->lowmem_remap_base; paddr |= uv_hub_info->lowmem_remap_base;
paddr |= uv_hub_info->gnode_upper; paddr |= uv_hub_info->gnode_upper;
paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | if (m_val)
((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift); paddr = ((paddr << uv_hub_info->m_shift)
>> uv_hub_info->m_shift) |
((paddr >> uv_hub_info->m_val)
<< uv_hub_info->n_lshift);
else
paddr |= uv_soc_phys_ram_to_nasid(paddr)
<< uv_hub_info->gpa_shift;
return paddr; return paddr;
} }
/* socket virtual --> UV global physical address */ /* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v) static inline unsigned long uv_gpa(void *v)
{ {
@ -338,54 +516,89 @@ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
unsigned long paddr; unsigned long paddr;
unsigned long remap_base = uv_hub_info->lowmem_remap_base; unsigned long remap_base = uv_hub_info->lowmem_remap_base;
unsigned long remap_top = uv_hub_info->lowmem_remap_top; unsigned long remap_top = uv_hub_info->lowmem_remap_top;
unsigned int m_val = uv_hub_info->m_val;
if (m_val)
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
paddr = gpa & uv_hub_info->gpa_mask; paddr = gpa & uv_hub_info->gpa_mask;
if (paddr >= remap_base && paddr < remap_base + remap_top) if (paddr >= remap_base && paddr < remap_base + remap_top)
paddr -= remap_base; paddr -= remap_base;
return paddr; return paddr;
} }
/* gpa -> gnode */
/* gpa -> pnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{ {
return gpa >> uv_hub_info->n_lshift; unsigned int n_lshift = uv_hub_info->n_lshift;
if (n_lshift)
return gpa >> n_lshift;
return uv_gam_range(gpa)->nasid >> 1;
} }
/* gpa -> pnode */ /* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa) static inline int uv_gpa_to_pnode(unsigned long gpa)
{ {
unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1; return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
return uv_gpa_to_gnode(gpa) & n_mask;
} }
/* gpa -> node offset*/ /* gpa -> node offset */
static inline unsigned long uv_gpa_to_offset(unsigned long gpa) static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{ {
return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift; unsigned int m_shift = uv_hub_info->m_shift;
if (m_shift)
return (gpa << m_shift) >> m_shift;
return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
}
/* Convert socket to node */
static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
{
return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
}
static inline int uv_socket_to_node(int socket)
{
return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
} }
/* pnode, offset --> socket virtual */ /* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{ {
return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset); unsigned int m_val = uv_hub_info->m_val;
unsigned long base;
unsigned short sockid, node, *p2s;
if (m_val)
return __va(((unsigned long)pnode << m_val) | offset);
p2s = uv_hub_info->pnode_to_socket;
sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
node = uv_socket_to_node(sockid);
/* limit address of previous socket is our base, except node 0 is 0 */
if (!node)
return __va((unsigned long)offset);
base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
return __va(base << UV_GAM_RANGE_SHFT | offset);
} }
/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
/*
* Extract a PNODE from an APICID (full apicid, not processor subset)
*/
static inline int uv_apicid_to_pnode(int apicid) static inline int uv_apicid_to_pnode(int apicid)
{ {
return (apicid >> uv_hub_info->apic_pnode_shift); int pnode = apicid >> uv_hub_info->apic_pnode_shift;
unsigned short *s2pn = uv_hub_info->socket_to_pnode;
return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
} }
/* /* Convert an apicid to the socket number on the blade */
* Convert an apicid to the socket number on the blade
*/
static inline int uv_apicid_to_socket(int apicid) static inline int uv_apicid_to_socket(int apicid)
{ {
if (is_uv1_hub()) if (is_uv1_hub())
@ -434,16 +647,6 @@ static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset
return readq(uv_global_mmr64_address(pnode, offset)); return readq(uv_global_mmr64_address(pnode, offset));
} }
/*
* Global MMR space addresses when referenced by the GRU. (GRU does
* NOT use socket addressing).
*/
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
return UV_GLOBAL_GRU_MMR_BASE | offset |
((unsigned long)pnode << uv_hub_info->m_val);
}
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{ {
writeb(val, uv_global_mmr64_address(pnode, offset)); writeb(val, uv_global_mmr64_address(pnode, offset));
@ -483,27 +686,23 @@ static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
writeb(val, uv_local_mmr_address(offset)); writeb(val, uv_local_mmr_address(offset));
} }
/*
* Structures and definitions for converting between cpu, node, pnode, and blade
* numbers.
*/
struct uv_blade_info {
unsigned short nr_possible_cpus;
unsigned short nr_online_cpus;
unsigned short pnode;
short memory_nid;
spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */
unsigned long nmi_count; /* obsolete, see uv_hub_nmi */
};
extern struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void) static inline int uv_blade_processor_id(void)
{ {
return uv_hub_info->blade_processor_id; return uv_cpu_info->blade_cpu_id;
}
/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{
return uv_cpu_info_per(cpu)->blade_cpu_id;
}
#define _uv_cpu_blade_processor_id 1 /* indicate function available */
/* Blade number to Node number (UV1..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{
return blade;
} }
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
@ -512,55 +711,60 @@ static inline int uv_numa_blade_id(void)
return uv_hub_info->numa_blade_id; return uv_hub_info->numa_blade_id;
} }
/*
* Convert linux node number to the UV blade number.
* .. Currently for UV1 thru UV4 the node and the blade are identical.
* .. If this changes then you MUST check references to this function!
*/
static inline int uv_node_to_blade_id(int nid)
{
return nid;
}
/* Convert a cpu number to the the UV blade number */ /* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu) static inline int uv_cpu_to_blade_id(int cpu)
{ {
return uv_cpu_to_blade[cpu]; return uv_node_to_blade_id(cpu_to_node(cpu));
}
/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
return uv_node_to_blade[nid];
} }
/* Convert a blade id to the PNODE of the blade */ /* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid) static inline int uv_blade_to_pnode(int bid)
{ {
return uv_blade_info[bid].pnode; return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
} }
/* Nid of memory node on blade. -1 if no blade-local memory */ /* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid) static inline int uv_blade_to_memory_nid(int bid)
{ {
return uv_blade_info[bid].memory_nid; return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
} }
/* Determine the number of possible cpus on a blade */ /* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid) static inline int uv_blade_nr_possible_cpus(int bid)
{ {
return uv_blade_info[bid].nr_possible_cpus; return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
} }
/* Determine the number of online cpus on a blade */ /* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid) static inline int uv_blade_nr_online_cpus(int bid)
{ {
return uv_blade_info[bid].nr_online_cpus; return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
} }
/* Convert a cpu id to the PNODE of the blade containing the cpu */ /* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu) static inline int uv_cpu_to_pnode(int cpu)
{ {
return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode; return uv_cpu_hub_info(cpu)->pnode;
} }
/* Convert a linux node number to the PNODE of the blade */ /* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid) static inline int uv_node_to_pnode(int nid)
{ {
return uv_blade_info[uv_node_to_blade_id(nid)].pnode; return uv_hub_info_list(nid)->pnode;
} }
/* Maximum possible number of blades */ /* Maximum possible number of blades */
extern short uv_possible_blades;
static inline int uv_num_possible_blades(void) static inline int uv_num_possible_blades(void)
{ {
return uv_possible_blades; return uv_possible_blades;
@ -578,9 +782,7 @@ extern void uv_nmi_setup(void);
/* Newer SMM NMI handler, not present in all systems */ /* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \ #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
#define UVH_NMI_MMRX_TYPE "EXTIO_INT0" #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
/* Non-zero indicates newer SMM NMI handler present */ /* Non-zero indicates newer SMM NMI handler present */
@ -622,9 +824,9 @@ DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
/* Update SCIR state */ /* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value) static inline void uv_set_scir_bits(unsigned char value)
{ {
if (uv_hub_info->scir.state != value) { if (uv_scir_info->state != value) {
uv_hub_info->scir.state = value; uv_scir_info->state = value;
uv_write_local_mmr8(uv_hub_info->scir.offset, value); uv_write_local_mmr8(uv_scir_info->offset, value);
} }
} }
@ -635,10 +837,10 @@ static inline unsigned long uv_scir_offset(int apicid)
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value) static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{ {
if (uv_cpu_hub_info(cpu)->scir.state != value) { if (uv_cpu_scir_info(cpu)->state != value) {
uv_write_global_mmr8(uv_cpu_to_pnode(cpu), uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
uv_cpu_hub_info(cpu)->scir.offset, value); uv_cpu_scir_info(cpu)->offset, value);
uv_cpu_hub_info(cpu)->scir.state = value; uv_cpu_scir_info(cpu)->state = value;
} }
} }
@ -666,10 +868,7 @@ static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
/* /*
* Get the minimum revision number of the hub chips within the partition. * Get the minimum revision number of the hub chips within the partition.
* 1 - UV1 rev 1.0 initial silicon * (See UVx_HUB_REVISION_BASE above for specific values.)
* 2 - UV1 rev 2.0 production silicon
* 3 - UV2 rev 1.0 initial silicon
* 5 - UV3 rev 1.0 initial silicon
*/ */
static inline int uv_get_min_hub_revision_id(void) static inline int uv_get_min_hub_revision_id(void)
{ {

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -21,19 +21,20 @@
#include <linux/efi.h> #include <linux/efi.h>
#include <linux/export.h> #include <linux/export.h>
#include <linux/slab.h>
#include <asm/efi.h> #include <asm/efi.h>
#include <linux/io.h> #include <linux/io.h>
#include <asm/uv/bios.h> #include <asm/uv/bios.h>
#include <asm/uv/uv_hub.h> #include <asm/uv/uv_hub.h>
static struct uv_systab uv_systab; struct uv_systab *uv_systab;
s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5) s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5)
{ {
struct uv_systab *tab = &uv_systab; struct uv_systab *tab = uv_systab;
s64 ret; s64 ret;
if (!tab->function) if (!tab || !tab->function)
/* /*
* BIOS does not support UV systab * BIOS does not support UV systab
*/ */
@ -183,34 +184,31 @@ int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus)
} }
EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target); EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target);
#ifdef CONFIG_EFI #ifdef CONFIG_EFI
void uv_bios_init(void) void uv_bios_init(void)
{ {
struct uv_systab *tab; uv_systab = NULL;
if ((efi.uv_systab == EFI_INVALID_TABLE_ADDR) || !efi.uv_systab) {
if ((efi.uv_systab == EFI_INVALID_TABLE_ADDR) || pr_crit("UV: UVsystab: missing\n");
(efi.uv_systab == (unsigned long)NULL)) {
printk(KERN_CRIT "No EFI UV System Table.\n");
uv_systab.function = (unsigned long)NULL;
return; return;
} }
tab = (struct uv_systab *)ioremap(efi.uv_systab, uv_systab = ioremap(efi.uv_systab, sizeof(struct uv_systab));
sizeof(struct uv_systab)); if (!uv_systab || strncmp(uv_systab->signature, UV_SYSTAB_SIG, 4)) {
if (strncmp(tab->signature, "UVST", 4) != 0) pr_err("UV: UVsystab: bad signature!\n");
printk(KERN_ERR "bad signature in UV system table!"); iounmap(uv_systab);
return;
}
/* if (uv_systab->revision >= UV_SYSTAB_VERSION_UV4) {
* Copy table to permanent spot for later use. iounmap(uv_systab);
*/ uv_systab = ioremap(efi.uv_systab, uv_systab->size);
memcpy(&uv_systab, tab, sizeof(struct uv_systab)); if (!uv_systab) {
iounmap(tab); pr_err("UV: UVsystab: ioremap(%d) failed!\n",
uv_systab->size);
printk(KERN_INFO "EFI UV System Table Revision %d\n", return;
uv_systab.revision); }
}
pr_info("UV: UVsystab: Revision:%x\n", uv_systab->revision);
} }
#else /* !CONFIG_EFI */
void uv_bios_init(void) { }
#endif #endif

View file

@ -37,7 +37,7 @@ static int timeout_base_ns[] = {
}; };
static int timeout_us; static int timeout_us;
static int nobau; static bool nobau = true;
static int nobau_perm; static int nobau_perm;
static cycles_t congested_cycles; static cycles_t congested_cycles;
@ -106,13 +106,28 @@ static char *stat_description[] = {
"enable: number times use of the BAU was re-enabled" "enable: number times use of the BAU was re-enabled"
}; };
static int __init static int __init setup_bau(char *arg)
setup_nobau(char *arg)
{ {
nobau = 1; int result;
if (!arg)
return -EINVAL;
result = strtobool(arg, &nobau);
if (result)
return result;
/* we need to flip the logic here, so that bau=y sets nobau to false */
nobau = !nobau;
if (!nobau)
pr_info("UV BAU Enabled\n");
else
pr_info("UV BAU Disabled\n");
return 0; return 0;
} }
early_param("nobau", setup_nobau); early_param("bau", setup_bau);
/* base pnode in this partition */ /* base pnode in this partition */
static int uv_base_pnode __read_mostly; static int uv_base_pnode __read_mostly;
@ -131,10 +146,10 @@ set_bau_on(void)
pr_info("BAU not initialized; cannot be turned on\n"); pr_info("BAU not initialized; cannot be turned on\n");
return; return;
} }
nobau = 0; nobau = false;
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->nobau = 0; bcp->nobau = false;
} }
pr_info("BAU turned on\n"); pr_info("BAU turned on\n");
return; return;
@ -146,10 +161,10 @@ set_bau_off(void)
int cpu; int cpu;
struct bau_control *bcp; struct bau_control *bcp;
nobau = 1; nobau = true;
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->nobau = 1; bcp->nobau = true;
} }
pr_info("BAU turned off\n"); pr_info("BAU turned off\n");
return; return;
@ -1886,7 +1901,7 @@ static void __init init_per_cpu_tunables(void)
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->baudisabled = 0; bcp->baudisabled = 0;
if (nobau) if (nobau)
bcp->nobau = 1; bcp->nobau = true;
bcp->statp = &per_cpu(ptcstats, cpu); bcp->statp = &per_cpu(ptcstats, cpu);
/* time interval to catch a hardware stay-busy bug */ /* time interval to catch a hardware stay-busy bug */
bcp->timeout_interval = usec_2_cycles(2*timeout_us); bcp->timeout_interval = usec_2_cycles(2*timeout_us);
@ -2025,7 +2040,8 @@ static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
return 1; return 1;
} }
bcp->uvhub_master = *hmasterp; bcp->uvhub_master = *hmasterp;
bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id; bcp->uvhub_cpu = uv_cpu_blade_processor_id(cpu);
if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) { if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
printk(KERN_EMERG "%d cpus per uvhub invalid\n", printk(KERN_EMERG "%d cpus per uvhub invalid\n",
bcp->uvhub_cpu); bcp->uvhub_cpu);

View file

@ -34,7 +34,7 @@ static ssize_t partition_id_show(struct kobject *kobj,
static ssize_t coherence_id_show(struct kobject *kobj, static ssize_t coherence_id_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf) struct kobj_attribute *attr, char *buf)
{ {
return snprintf(buf, PAGE_SIZE, "%ld\n", partition_coherence_id()); return snprintf(buf, PAGE_SIZE, "%ld\n", uv_partition_coherence_id());
} }
static struct kobj_attribute partition_id_attr = static struct kobj_attribute partition_id_attr =

View file

@ -165,7 +165,7 @@ static __init int uv_rtc_allocate_timers(void)
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
int nid = cpu_to_node(cpu); int nid = cpu_to_node(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
if (!head) { if (!head) {
@ -226,7 +226,7 @@ static int uv_rtc_set_timer(int cpu, u64 expires)
int pnode = uv_cpu_to_pnode(cpu); int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires; u64 *t = &head->cpu[bcpu].expires;
unsigned long flags; unsigned long flags;
int next_cpu; int next_cpu;
@ -262,7 +262,7 @@ static int uv_rtc_unset_timer(int cpu, int force)
int pnode = uv_cpu_to_pnode(cpu); int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires; u64 *t = &head->cpu[bcpu].expires;
unsigned long flags; unsigned long flags;
int rc = 0; int rc = 0;

View file

@ -718,8 +718,8 @@ cberr:
static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
void *mesg, int lines) void *mesg, int lines)
{ {
unsigned long m, *val = mesg, gpa, save; unsigned long m;
int ret; int ret, loops = 200; /* experimentally determined */
m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
if (lines == 2) { if (lines == 2) {
@ -735,22 +735,28 @@ static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
return MQE_OK; return MQE_OK;
/* /*
* Send a cross-partition interrupt to the SSI that contains the target * Send a noop message in order to deliver a cross-partition interrupt
* message queue. Normally, the interrupt is automatically delivered by * to the SSI that contains the target message queue. Normally, the
* hardware but some error conditions require explicit delivery. * interrupt is automatically delivered by hardware following mesq
* Use the GRU to deliver the interrupt. Otherwise partition failures * operations, but some error conditions require explicit delivery.
* The noop message will trigger delivery. Otherwise partition failures
* could cause unrecovered errors. * could cause unrecovered errors.
*/ */
gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT); do {
save = *val; ret = send_noop_message(cb, mqd, mesg);
*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector, } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
dest_Fixed);
gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA); if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
ret = gru_wait(cb); /*
*val = save; * Don't indicate to the app to resend the message, as it's
if (ret != CBS_IDLE) * already been successfully sent. We simply send an OK
return MQE_UNEXPECTED_CB_ERR; * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
return MQE_OK; * assuming that the other side is receiving enough
* interrupts to get this message processed anyway.
*/
ret = MQE_OK;
}
return ret;
} }
/* /*