drm: vmwgfx: fix common struct sg_table related issues

The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().

struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).

It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.

To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Roland Scheidegger <sroland@vmware.com>
This commit is contained in:
Marek Szyprowski 2020-04-28 13:10:36 +02:00
parent 75ef337bdb
commit c915c2cbaf

View file

@ -362,8 +362,7 @@ static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
{
struct device *dev = vmw_tt->dev_priv->dev->dev;
dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
DMA_BIDIRECTIONAL);
dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
}
@ -383,16 +382,8 @@ static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
{
struct device *dev = vmw_tt->dev_priv->dev->dev;
int ret;
ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
DMA_BIDIRECTIONAL);
if (unlikely(ret == 0))
return -ENOMEM;
vmw_tt->sgt.nents = ret;
return 0;
return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
}
/**
@ -449,10 +440,10 @@ static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
if (unlikely(ret != 0))
goto out_sg_alloc_fail;
if (vsgt->num_pages > vmw_tt->sgt.nents) {
if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
uint64_t over_alloc =
sgl_size * (vsgt->num_pages -
vmw_tt->sgt.nents);
vmw_tt->sgt.orig_nents);
ttm_mem_global_free(glob, over_alloc);
vmw_tt->sg_alloc_size -= over_alloc;