Phylink now requires that parameters established through
auto-negotiation be written into the MAC at the time of the
mac_link_up() callback. In the case of felix, that means taking the port
out of reset, setting the correct timers for PAUSE frames, and
enabling/disabling TX flow control.
This patch also splits the inband and noinband configuration of the
vsc9959 PCS (currently found in a function called "init") into 2
different functions, which have a nomenclature closer to phylink:
"config", for inband setup, and "link_up", for noinband (forced) setup.
This is necessary as a preparation step for giving up control of the PCS
to phylink, which will be done in further patch series.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Phylink uses the .mac_an_restart method to offer the user an
implementation of the "ethtool -r" behavior, when the media-side auto
negotiation can be restarted by the local MAC PCS. This is the case for
fiber modes 1000Base-X and 2500Base-X (IEEE clause 37) that don't have
an Ethernet PHY connected locally, and the media is connected to the MAC
PCS directly.
On the other hand, the Cisco SGMII and USXGMII standards also have an
auto negotiation mechanism based on IEEE 802.3 clause 37 (their
respective specs require a MAC PCS and a PHY PCS to implement the same
state machine, which is described in IEEE 802.3 "Auto-Negotiation Figure
37-6"), so the ability to restart auto-negotiation is intrinsically
symmetrical (the MAC PCS can do it too).
However, it appears that not all SGMII/USXGMII PHYs have logic to
restart the MDI-side auto-negotiation process when they detect a
transition of the SGMII link from data mode to configuration mode.
Some do (VSC8234) and some don't (AR8033, MV88E1111). IEEE and/or Cisco
specification wordings to not help to prove whether propagating the "AN
restart" event from MII side ("mr_restart_an") to MDI side
("mr_restart_negotiation") is required behavior - neither of them
specifies any mandatory interaction between the clause 37 AN state
machine from Figure 37-6 and the clause 28 AN state machine from Figure
28-18.
Therefore, even if a certain behavior could be proven as being required,
real-life SGMII/USXGMII PHYs are inconsistent enough that a clause 37 AN
restart cannot be used by phylink to reliably trigger a media-side
renegotiation, when the user requests it via ethtool.
The only remaining use that the .mac_an_restart callback might possibly
have, given what we know now, is to implement some silicon quirks, but
so far that has proven to not be necessary.
So remove this code for now, since it never gets called and we don't
foresee any circumstance in which it might be, either.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The MSCC bug fix in 'net' had to be slightly adjusted because the
register accesses are done slightly differently in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
The caller of devm_ioremap_resource(), either accidentally
or by wrong assumption, is writing back derived resource data
to global static resource initialization tables that should
have been constant. Meaning that after it computes the final
physical start address it saves the address for no reason
in the static tables. This doesn't affect the first driver
probing after reboot, but it breaks consecutive driver reloads
(i.e. driver unbind & bind) because the initialization tables
no longer have the correct initial values. So the next probe()
will map the device registers to wrong physical addresses,
causing ARM SError async exceptions.
This patch fixes all of the above.
Fixes: 5605194877 ("net: dsa: ocelot: add driver for Felix switch family")
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ocelot VSC9959 switch supports time-based egress shaping in hardware
according to IEEE 802.1Qbv. This patch add support for TAS configuration
on egress port of VSC9959 switch.
Felix driver is an instance of Ocelot family, with a DSA front-end. The
patch uses tc taprio hardware offload to setup TAS set function on felix
driver.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When running 'bridge fdb dump' on Felix, sometimes learnt and static MAC
addresses would appear, sometimes they wouldn't.
Turns out, the MAC table has 4096 entries on VSC7514 (Ocelot) and 8192
entries on VSC9959 (Felix), so the existing code from the Ocelot common
library only dumped half of Felix's MAC table. They are both organized
as a 4-way set-associative TCAM, so we just need a single variable
indicating the correct number of rows.
Fixes: 5605194877 ("net: dsa: ocelot: add driver for Felix switch family")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now it can be seen that the VSC9959 (Felix) switch will not flood
frames if they have a VLAN tag with a PCP of 1-7 (nonzero).
It turns out that Felix is quite different from its cousin, Ocelot, in
that frame flooding can be allowed/denied per traffic class. Where
Ocelot has 1 instance of the ANA_FLOODING register, Felix has 8.
The approach that this driver is going to take is "thanks, but no
thanks". We have no use case of limiting the flooding domain based on
traffic class, so we just want to allow packets to be flooded, no matter
what traffic class they have.
So we copy the line of code from ocelot.c which does the one-shot
initialization of the flooding PGIDs, and we add it to felix.c as well -
except replicated 8 times.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export the cls_flower methods from the ocelot driver and hook them up to
the DSA passthrough layer.
Tables for the VCAP IS2 parameters, as well as half key packing (field
offsets and lengths) need to be defined for the VSC9959 core, as they
are different from Ocelot, mainly due to the different port count.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>