Star64_linux/drivers/gpu/drm/i915/gt/intel_gtt.c
Maarten Lankhorst bc6f80cce9 drm/i915: Use trylock in shrinker for ggtt on bsw vt-d and bxt, v2.
The stop_machine() lock may allocate memory, but is called inside
vm->mutex, which is taken in the shrinker. This will cause a lockdep
splat, as can be seen below:

<4>[  462.585762] ======================================================
<4>[  462.585768] WARNING: possible circular locking dependency detected
<4>[  462.585773] 5.12.0-rc5-CI-Trybot_7644+ #1 Tainted: G     U
<4>[  462.585779] ------------------------------------------------------
<4>[  462.585783] i915_selftest/5540 is trying to acquire lock:
<4>[  462.585788] ffffffff826440b0 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x12/0x30
<4>[  462.585814]
                  but task is already holding lock:
<4>[  462.585818] ffff888125369c70 (&vm->mutex/1){+.+.}-{3:3}, at: i915_vma_pin_ww+0x38e/0xb40 [i915]
<4>[  462.586301]
                  which lock already depends on the new lock.

<4>[  462.586305]
                  the existing dependency chain (in reverse order) is:
<4>[  462.586309]
                  -> #2 (&vm->mutex/1){+.+.}-{3:3}:
<4>[  462.586323]        i915_gem_shrinker_taints_mutex+0x2d/0x50 [i915]
<4>[  462.586719]        i915_address_space_init+0x12d/0x130 [i915]
<4>[  462.587092]        ppgtt_init+0x4e/0x80 [i915]
<4>[  462.587467]        gen8_ppgtt_create+0x3e/0x5c0 [i915]
<4>[  462.587828]        i915_ppgtt_create+0x28/0xf0 [i915]
<4>[  462.588203]        intel_gt_init+0x123/0x370 [i915]
<4>[  462.588572]        i915_gem_init+0x129/0x1f0 [i915]
<4>[  462.588971]        i915_driver_probe+0x753/0xd80 [i915]
<4>[  462.589320]        i915_pci_probe+0x43/0x1d0 [i915]
<4>[  462.589671]        pci_device_probe+0x9e/0x110
<4>[  462.589680]        really_probe+0xea/0x410
<4>[  462.589690]        driver_probe_device+0xd9/0x140
<4>[  462.589697]        device_driver_attach+0x4a/0x50
<4>[  462.589704]        __driver_attach+0x83/0x140
<4>[  462.589711]        bus_for_each_dev+0x75/0xc0
<4>[  462.589718]        bus_add_driver+0x14b/0x1f0
<4>[  462.589724]        driver_register+0x66/0xb0
<4>[  462.589731]        i915_init+0x70/0x87 [i915]
<4>[  462.590053]        do_one_initcall+0x56/0x2e0
<4>[  462.590061]        do_init_module+0x55/0x200
<4>[  462.590068]        load_module+0x2703/0x2990
<4>[  462.590074]        __do_sys_finit_module+0xad/0x110
<4>[  462.590080]        do_syscall_64+0x33/0x80
<4>[  462.590089]        entry_SYSCALL_64_after_hwframe+0x44/0xae
<4>[  462.590096]
                  -> #1 (fs_reclaim){+.+.}-{0:0}:
<4>[  462.590109]        fs_reclaim_acquire+0x9f/0xd0
<4>[  462.590118]        kmem_cache_alloc_trace+0x3d/0x430
<4>[  462.590126]        intel_cpuc_prepare+0x3b/0x1b0
<4>[  462.590133]        cpuhp_invoke_callback+0x9e/0x890
<4>[  462.590141]        _cpu_up+0xa4/0x130
<4>[  462.590147]        cpu_up+0x82/0x90
<4>[  462.590153]        bringup_nonboot_cpus+0x4a/0x60
<4>[  462.590159]        smp_init+0x21/0x5c
<4>[  462.590167]        kernel_init_freeable+0x8a/0x1b7
<4>[  462.590175]        kernel_init+0x5/0xff
<4>[  462.590181]        ret_from_fork+0x22/0x30
<4>[  462.590187]
                  -> #0 (cpu_hotplug_lock){++++}-{0:0}:
<4>[  462.590199]        __lock_acquire+0x1520/0x2590
<4>[  462.590207]        lock_acquire+0xd1/0x3d0
<4>[  462.590213]        cpus_read_lock+0x39/0xc0
<4>[  462.590219]        stop_machine+0x12/0x30
<4>[  462.590226]        bxt_vtd_ggtt_insert_entries__BKL+0x36/0x50 [i915]
<4>[  462.590601]        ggtt_bind_vma+0x5d/0x80 [i915]
<4>[  462.590970]        i915_vma_bind+0xdc/0x1c0 [i915]
<4>[  462.591374]        i915_vma_pin_ww+0x435/0xb40 [i915]
<4>[  462.591779]        make_obj_busy+0xcb/0x330 [i915]
<4>[  462.592170]        igt_mmap_offset_exhaustion+0x45f/0x4c0 [i915]
<4>[  462.592562]        __i915_subtests.cold.7+0x42/0x92 [i915]
<4>[  462.592995]        __run_selftests.part.3+0x10d/0x172 [i915]
<4>[  462.593428]        i915_live_selftests.cold.5+0x1f/0x47 [i915]
<4>[  462.593860]        i915_pci_probe+0x93/0x1d0 [i915]
<4>[  462.594210]        pci_device_probe+0x9e/0x110
<4>[  462.594217]        really_probe+0xea/0x410
<4>[  462.594226]        driver_probe_device+0xd9/0x140
<4>[  462.594233]        device_driver_attach+0x4a/0x50
<4>[  462.594240]        __driver_attach+0x83/0x140
<4>[  462.594247]        bus_for_each_dev+0x75/0xc0
<4>[  462.594254]        bus_add_driver+0x14b/0x1f0
<4>[  462.594260]        driver_register+0x66/0xb0
<4>[  462.594267]        i915_init+0x70/0x87 [i915]
<4>[  462.594586]        do_one_initcall+0x56/0x2e0
<4>[  462.594592]        do_init_module+0x55/0x200
<4>[  462.594599]        load_module+0x2703/0x2990
<4>[  462.594605]        __do_sys_finit_module+0xad/0x110
<4>[  462.594612]        do_syscall_64+0x33/0x80
<4>[  462.594618]        entry_SYSCALL_64_after_hwframe+0x44/0xae
<4>[  462.594625]
                  other info that might help us debug this:

<4>[  462.594629] Chain exists of:
                    cpu_hotplug_lock --> fs_reclaim --> &vm->mutex/1

<4>[  462.594645]  Possible unsafe locking scenario:

<4>[  462.594648]        CPU0                    CPU1
<4>[  462.594652]        ----                    ----
<4>[  462.594655]   lock(&vm->mutex/1);
<4>[  462.594664]                                lock(fs_reclaim);
<4>[  462.594671]                                lock(&vm->mutex/1);
<4>[  462.594679]   lock(cpu_hotplug_lock);
<4>[  462.594686]
                   *** DEADLOCK ***

<4>[  462.594690] 4 locks held by i915_selftest/5540:
<4>[  462.594696]  #0: ffff888100fbc240 (&dev->mutex){....}-{3:3}, at: device_driver_attach+0x18/0x50
<4>[  462.594715]  #1: ffffc900006cb9a0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: make_obj_busy+0x81/0x330 [i915]
<4>[  462.595118]  #2: ffff88812a6081e8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: make_obj_busy+0x21f/0x330 [i915]
<4>[  462.595519]  #3: ffff888125369c70 (&vm->mutex/1){+.+.}-{3:3}, at: i915_vma_pin_ww+0x38e/0xb40 [i915]
<4>[  462.595934]
                  stack backtrace:
<4>[  462.595939] CPU: 0 PID: 5540 Comm: i915_selftest Tainted: G     U            5.12.0-rc5-CI-Trybot_7644+ #1
<4>[  462.595947] Hardware name: GOOGLE Kefka/Kefka, BIOS MrChromebox 02/04/2018
<4>[  462.595952] Call Trace:
<4>[  462.595961]  dump_stack+0x7f/0xad
<4>[  462.595974]  check_noncircular+0x12e/0x150
<4>[  462.595982]  ? save_stack.isra.17+0x3f/0x70
<4>[  462.595991]  ? drm_mm_insert_node_in_range+0x34a/0x5b0
<4>[  462.596000]  ? i915_vma_pin_ww+0x9ec/0xb40 [i915]
<4>[  462.596410]  __lock_acquire+0x1520/0x2590
<4>[  462.596419]  ? do_init_module+0x55/0x200
<4>[  462.596429]  lock_acquire+0xd1/0x3d0
<4>[  462.596435]  ? stop_machine+0x12/0x30
<4>[  462.596445]  ? gen8_ggtt_insert_entries+0xf0/0xf0 [i915]
<4>[  462.596816]  cpus_read_lock+0x39/0xc0
<4>[  462.596824]  ? stop_machine+0x12/0x30
<4>[  462.596831]  stop_machine+0x12/0x30
<4>[  462.596839]  bxt_vtd_ggtt_insert_entries__BKL+0x36/0x50 [i915]
<4>[  462.597210]  ggtt_bind_vma+0x5d/0x80 [i915]
<4>[  462.597580]  i915_vma_bind+0xdc/0x1c0 [i915]
<4>[  462.597986]  i915_vma_pin_ww+0x435/0xb40 [i915]
<4>[  462.598395]  ? make_obj_busy+0xcb/0x330 [i915]
<4>[  462.598786]  make_obj_busy+0xcb/0x330 [i915]
<4>[  462.599180]  ? 0xffffffff81000000
<4>[  462.599187]  ? debug_mutex_unlock+0x50/0xa0
<4>[  462.599198]  igt_mmap_offset_exhaustion+0x45f/0x4c0 [i915]
<4>[  462.599592]  __i915_subtests.cold.7+0x42/0x92 [i915]
<4>[  462.600026]  ? i915_perf_selftests+0x20/0x20 [i915]
<4>[  462.600422]  ? __i915_nop_setup+0x10/0x10 [i915]
<4>[  462.600820]  __run_selftests.part.3+0x10d/0x172 [i915]
<4>[  462.601253]  i915_live_selftests.cold.5+0x1f/0x47 [i915]
<4>[  462.601686]  i915_pci_probe+0x93/0x1d0 [i915]
<4>[  462.602037]  ? _raw_spin_unlock_irqrestore+0x3d/0x60
<4>[  462.602047]  pci_device_probe+0x9e/0x110
<4>[  462.602057]  really_probe+0xea/0x410
<4>[  462.602067]  driver_probe_device+0xd9/0x140
<4>[  462.602075]  device_driver_attach+0x4a/0x50
<4>[  462.602084]  __driver_attach+0x83/0x140
<4>[  462.602091]  ? device_driver_attach+0x50/0x50
<4>[  462.602099]  ? device_driver_attach+0x50/0x50
<4>[  462.602107]  bus_for_each_dev+0x75/0xc0
<4>[  462.602116]  bus_add_driver+0x14b/0x1f0
<4>[  462.602124]  driver_register+0x66/0xb0
<4>[  462.602133]  i915_init+0x70/0x87 [i915]
<4>[  462.602453]  ? 0xffffffffa0606000
<4>[  462.602458]  do_one_initcall+0x56/0x2e0
<4>[  462.602466]  ? kmem_cache_alloc_trace+0x374/0x430
<4>[  462.602476]  do_init_module+0x55/0x200
<4>[  462.602484]  load_module+0x2703/0x2990
<4>[  462.602500]  ? __do_sys_finit_module+0xad/0x110
<4>[  462.602507]  __do_sys_finit_module+0xad/0x110
<4>[  462.602519]  do_syscall_64+0x33/0x80
<4>[  462.602527]  entry_SYSCALL_64_after_hwframe+0x44/0xae
<4>[  462.602535] RIP: 0033:0x7fab69d8d89d

Changes since v1:
- Add lockdep annotations during init, to ensure that lockdep is primed.
  This also fixes a false positive when reading /proc/lockdep_stats
  during module reload.

Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210426102351.921874-1-maarten.lankhorst@linux.intel.com
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2021-04-29 11:32:32 +02:00

539 lines
15 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/slab.h> /* fault-inject.h is not standalone! */
#include <linux/fault-inject.h>
#include "gem/i915_gem_lmem.h"
#include "i915_trace.h"
#include "intel_gt.h"
#include "intel_gtt.h"
struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
{
struct drm_i915_gem_object *obj;
obj = i915_gem_object_create_lmem(vm->i915, sz, 0);
/*
* Ensure all paging structures for this vm share the same dma-resv
* object underneath, with the idea that one object_lock() will lock
* them all at once.
*/
if (!IS_ERR(obj))
obj->base.resv = &vm->resv;
return obj;
}
struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
{
struct drm_i915_gem_object *obj;
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
i915_gem_shrink_all(vm->i915);
obj = i915_gem_object_create_internal(vm->i915, sz);
/*
* Ensure all paging structures for this vm share the same dma-resv
* object underneath, with the idea that one object_lock() will lock
* them all at once.
*/
if (!IS_ERR(obj))
obj->base.resv = &vm->resv;
return obj;
}
int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
enum i915_map_type type;
void *vaddr;
type = i915_coherent_map_type(vm->i915, obj, true);
vaddr = i915_gem_object_pin_map_unlocked(obj, type);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
i915_gem_object_make_unshrinkable(obj);
return 0;
}
int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
enum i915_map_type type;
void *vaddr;
type = i915_coherent_map_type(vm->i915, obj, true);
vaddr = i915_gem_object_pin_map(obj, type);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
i915_gem_object_make_unshrinkable(obj);
return 0;
}
void __i915_vm_close(struct i915_address_space *vm)
{
struct i915_vma *vma, *vn;
if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
return;
list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
/* Keep the obj (and hence the vma) alive as _we_ destroy it */
if (!kref_get_unless_zero(&obj->base.refcount))
continue;
atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
WARN_ON(__i915_vma_unbind(vma));
__i915_vma_put(vma);
i915_gem_object_put(obj);
}
GEM_BUG_ON(!list_empty(&vm->bound_list));
mutex_unlock(&vm->mutex);
}
/* lock the vm into the current ww, if we lock one, we lock all */
int i915_vm_lock_objects(struct i915_address_space *vm,
struct i915_gem_ww_ctx *ww)
{
if (vm->scratch[0]->base.resv == &vm->resv) {
return i915_gem_object_lock(vm->scratch[0], ww);
} else {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
/* We borrowed the scratch page from ggtt, take the top level object */
return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
}
}
void i915_address_space_fini(struct i915_address_space *vm)
{
drm_mm_takedown(&vm->mm);
mutex_destroy(&vm->mutex);
}
static void __i915_vm_release(struct work_struct *work)
{
struct i915_address_space *vm =
container_of(work, struct i915_address_space, rcu.work);
vm->cleanup(vm);
i915_address_space_fini(vm);
dma_resv_fini(&vm->resv);
kfree(vm);
}
void i915_vm_release(struct kref *kref)
{
struct i915_address_space *vm =
container_of(kref, struct i915_address_space, ref);
GEM_BUG_ON(i915_is_ggtt(vm));
trace_i915_ppgtt_release(vm);
queue_rcu_work(vm->i915->wq, &vm->rcu);
}
void i915_address_space_init(struct i915_address_space *vm, int subclass)
{
kref_init(&vm->ref);
INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
atomic_set(&vm->open, 1);
/*
* The vm->mutex must be reclaim safe (for use in the shrinker).
* Do a dummy acquire now under fs_reclaim so that any allocation
* attempt holding the lock is immediately reported by lockdep.
*/
mutex_init(&vm->mutex);
lockdep_set_subclass(&vm->mutex, subclass);
if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
} else {
/*
* CHV + BXT VTD workaround use stop_machine(),
* which is allowed to allocate memory. This means &vm->mutex
* is the outer lock, and in theory we can allocate memory inside
* it through stop_machine().
*
* Add the annotation for this, we use trylock in shrinker.
*/
mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
might_alloc(GFP_KERNEL);
mutex_release(&vm->mutex.dep_map, _THIS_IP_);
}
dma_resv_init(&vm->resv);
GEM_BUG_ON(!vm->total);
drm_mm_init(&vm->mm, 0, vm->total);
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
INIT_LIST_HEAD(&vm->bound_list);
}
void clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
if (vma->pages != vma->obj->mm.pages) {
sg_free_table(vma->pages);
kfree(vma->pages);
}
vma->pages = NULL;
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
}
void *__px_vaddr(struct drm_i915_gem_object *p)
{
enum i915_map_type type;
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return page_unpack_bits(p->mm.mapping, &type);
}
dma_addr_t __px_dma(struct drm_i915_gem_object *p)
{
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return sg_dma_address(p->mm.pages->sgl);
}
struct page *__px_page(struct drm_i915_gem_object *p)
{
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return sg_page(p->mm.pages->sgl);
}
void
fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
{
void *vaddr = __px_vaddr(p);
memset64(vaddr, val, count);
clflush_cache_range(vaddr, PAGE_SIZE);
}
static void poison_scratch_page(struct drm_i915_gem_object *scratch)
{
void *vaddr = __px_vaddr(scratch);
u8 val;
val = 0;
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
val = POISON_FREE;
memset(vaddr, val, scratch->base.size);
}
int setup_scratch_page(struct i915_address_space *vm)
{
unsigned long size;
/*
* In order to utilize 64K pages for an object with a size < 2M, we will
* need to support a 64K scratch page, given that every 16th entry for a
* page-table operating in 64K mode must point to a properly aligned 64K
* region, including any PTEs which happen to point to scratch.
*
* This is only relevant for the 48b PPGTT where we support
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
* scratch (read-only) between all vm, we create one 64k scratch page
* for all.
*/
size = I915_GTT_PAGE_SIZE_4K;
if (i915_vm_is_4lvl(vm) &&
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
size = I915_GTT_PAGE_SIZE_64K;
do {
struct drm_i915_gem_object *obj;
obj = vm->alloc_pt_dma(vm, size);
if (IS_ERR(obj))
goto skip;
if (map_pt_dma(vm, obj))
goto skip_obj;
/* We need a single contiguous page for our scratch */
if (obj->mm.page_sizes.sg < size)
goto skip_obj;
/* And it needs to be correspondingly aligned */
if (__px_dma(obj) & (size - 1))
goto skip_obj;
/*
* Use a non-zero scratch page for debugging.
*
* We want a value that should be reasonably obvious
* to spot in the error state, while also causing a GPU hang
* if executed. We prefer using a clear page in production, so
* should it ever be accidentally used, the effect should be
* fairly benign.
*/
poison_scratch_page(obj);
vm->scratch[0] = obj;
vm->scratch_order = get_order(size);
return 0;
skip_obj:
i915_gem_object_put(obj);
skip:
if (size == I915_GTT_PAGE_SIZE_4K)
return -ENOMEM;
size = I915_GTT_PAGE_SIZE_4K;
} while (1);
}
void free_scratch(struct i915_address_space *vm)
{
int i;
for (i = 0; i <= vm->top; i++)
i915_gem_object_put(vm->scratch[i]);
}
void gtt_write_workarounds(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
/*
* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
if (IS_BROADWELL(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_GEN9_LP(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
/*
* To support 64K PTEs we need to first enable the use of the
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
* shouldn't be needed after GEN10.
*
* 64K pages were first introduced from BDW+, although technically they
* only *work* from gen9+. For pre-BDW we instead have the option for
* 32K pages, but we don't currently have any support for it in our
* driver.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
INTEL_GEN(i915) <= 10)
intel_uncore_rmw(uncore,
GEN8_GAMW_ECO_DEV_RW_IA,
0,
GAMW_ECO_ENABLE_64K_IPS_FIELD);
if (IS_GEN_RANGE(i915, 8, 11)) {
bool can_use_gtt_cache = true;
/*
* According to the BSpec if we use 2M/1G pages then we also
* need to disable the GTT cache. At least on BDW we can see
* visual corruption when using 2M pages, and not disabling the
* GTT cache.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
can_use_gtt_cache = false;
/* WaGttCachingOffByDefault */
intel_uncore_write(uncore,
HSW_GTT_CACHE_EN,
can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
intel_uncore_read(uncore,
HSW_GTT_CACHE_EN) == 0);
}
}
static void tgl_setup_private_ppat(struct intel_uncore *uncore)
{
/* TGL doesn't support LLC or AGE settings */
intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}
static void cnl_setup_private_ppat(struct intel_uncore *uncore)
{
intel_uncore_write(uncore,
GEN10_PAT_INDEX(0),
GEN8_PPAT_WB | GEN8_PPAT_LLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(1),
GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(2),
GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(3),
GEN8_PPAT_UC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(4),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(5),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(6),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(7),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}
/*
* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases.
*/
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
{
struct drm_i915_private *i915 = uncore->i915;
u64 pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
/* for scanout with eLLC */
if (INTEL_GEN(i915) >= 9)
pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
else
pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
static void chv_setup_private_ppat(struct intel_uncore *uncore)
{
u64 pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
void setup_private_pat(struct intel_uncore *uncore)
{
struct drm_i915_private *i915 = uncore->i915;
GEM_BUG_ON(INTEL_GEN(i915) < 8);
if (INTEL_GEN(i915) >= 12)
tgl_setup_private_ppat(uncore);
else if (INTEL_GEN(i915) >= 10)
cnl_setup_private_ppat(uncore);
else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
chv_setup_private_ppat(uncore);
else
bdw_setup_private_ppat(uncore);
}
struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
if (IS_ERR(obj))
return ERR_CAST(obj);
i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
return vma;
}
struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
{
struct i915_vma *vma;
int err;
vma = __vm_create_scratch_for_read(vm, size);
if (IS_ERR(vma))
return vma;
err = i915_vma_pin(vma, 0, 0,
i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
if (err) {
i915_vma_put(vma);
return ERR_PTR(err);
}
return vma;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
#endif