#include "riscv_math.h" #include #include #include "../common.h" #include "../HelperFunctions/math_helper.c" #include "../HelperFunctions/ref_helper.c" #include #define DELTAF32 (0.05f) #define DELTAQ31 (63) #define DELTAQ15 (1) #define DELTAQ7 (1) int test_flag_error = 0; /* The sigmoid SVM instance containing all parameters. Those parameters can be generated with the python library scikit-learn. */ riscv_svm_sigmoid_instance_f32 params; /* Parameters generated by a training of the SVM classifier using scikit-learn and some random input data. */ #define NB_SUPPORT_VECTORS 2 /* Dimension of the vector space. A vector is your feature. It could, for instance, be the pixels of a picture or the FFT of a signal. */ #define VECTOR_DIMENSION 2 const float32_t dualCoefficients[NB_SUPPORT_VECTORS]={-0.5006101f,0.5006101f}; /* Dual coefficients */ const float32_t supportVectors[NB_SUPPORT_VECTORS*VECTOR_DIMENSION]={-1.33358633f,3.46798561f,-0.56781298f,-2.79117593f}; /* Support vectors */ /* Class A is identified with value 0. Class B is identified with value 1. This array is used by the SVM functions to do a conversion and ease the comparison with the Python code where different values could be used. */ const int32_t classes[2]={0,1}; int main() { int i; BENCH_INIT; /* Array of input data */ float32_t in[VECTOR_DIMENSION]; /* Result of the classifier */ int32_t result; /* Initialization of the SVM instance parameters. Additional parameters (intercept, degree, coef0 and gamma) are also coming from Python. */ riscv_svm_sigmoid_init_f32(¶ms, NB_SUPPORT_VECTORS, VECTOR_DIMENSION, 0.000017f, /* Intercept */ dualCoefficients, supportVectors, classes, 1.100000f, /* Coef0 */ 0.500000f /* Gamma */ ); /* Input data. It is corresponding to a point inside the first class. */ in[0] = 0.4f; in[1] = 0.1f; BENCH_START(riscv_svm_sigmoid_predict_f32); riscv_svm_sigmoid_predict_f32(¶ms, in, &result); BENCH_END(riscv_svm_sigmoid_predict_f32); /* Result should be 0 : First class */ if (result != 0) { BENCH_ERROR(riscv_svm_sigmoid_predict_f32); printf("expect: %d, actual: %d\n", 0, result); test_flag_error = 1; } BENCH_STATUS(riscv_svm_sigmoid_predict_f32); /* This input vector is corresponding to a point inside the second class. */ in[0] = 3.0f; in[1] = 0.0f; riscv_svm_sigmoid_predict_f32(¶ms, in, &result); /* Result should be 0 : First class */ if (result != 1) { BENCH_ERROR(riscv_svm_sigmoid_predict_f32); printf("expect: %d, actual: %d\n", 1, result); test_flag_error = 1; } BENCH_STATUS(riscv_svm_sigmoid_predict_f32); BENCH_FINISH; if (test_flag_error) { printf("test error apprears, please recheck.\n"); return 1; } else { printf("all test are passed. Well done!\n"); } return 0; };