mirror of
https://github.com/Fishwaldo/linux-bl808.git
synced 2025-06-17 20:25:19 +00:00
RISC-V: Flush I$ when making a dirty page executable
The RISC-V ISA allows for instruction caches that are not coherent WRT stores, even on a single hart. As a result, we need to explicitly flush the instruction cache whenever marking a dirty page as executable in order to preserve the correct system behavior. Local instruction caches aren't that scary (our implementations actually flush the cache, but RISC-V is defined to allow higher-performance implementations to exist), but RISC-V defines no way to perform an instruction cache shootdown. When explicitly asked to do so we can shoot down remote instruction caches via an IPI, but this is a bit on the slow side. Instead of requiring an IPI to all harts whenever marking a page as executable, we simply flush the currently running harts. In order to maintain correct behavior, we additionally mark every other hart as needing a deferred instruction cache which will be taken before anything runs on it. Signed-off-by: Andrew Waterman <andrew@sifive.com> Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This commit is contained in:
parent
28dfbe6ed4
commit
08f051eda3
8 changed files with 174 additions and 30 deletions
|
@ -108,3 +108,51 @@ void smp_send_reschedule(int cpu)
|
|||
{
|
||||
send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Performs an icache flush for the given MM context. RISC-V has no direct
|
||||
* mechanism for instruction cache shoot downs, so instead we send an IPI that
|
||||
* informs the remote harts they need to flush their local instruction caches.
|
||||
* To avoid pathologically slow behavior in a common case (a bunch of
|
||||
* single-hart processes on a many-hart machine, ie 'make -j') we avoid the
|
||||
* IPIs for harts that are not currently executing a MM context and instead
|
||||
* schedule a deferred local instruction cache flush to be performed before
|
||||
* execution resumes on each hart.
|
||||
*/
|
||||
void flush_icache_mm(struct mm_struct *mm, bool local)
|
||||
{
|
||||
unsigned int cpu;
|
||||
cpumask_t others, *mask;
|
||||
|
||||
preempt_disable();
|
||||
|
||||
/* Mark every hart's icache as needing a flush for this MM. */
|
||||
mask = &mm->context.icache_stale_mask;
|
||||
cpumask_setall(mask);
|
||||
/* Flush this hart's I$ now, and mark it as flushed. */
|
||||
cpu = smp_processor_id();
|
||||
cpumask_clear_cpu(cpu, mask);
|
||||
local_flush_icache_all();
|
||||
|
||||
/*
|
||||
* Flush the I$ of other harts concurrently executing, and mark them as
|
||||
* flushed.
|
||||
*/
|
||||
cpumask_andnot(&others, mm_cpumask(mm), cpumask_of(cpu));
|
||||
local |= cpumask_empty(&others);
|
||||
if (mm != current->active_mm || !local)
|
||||
sbi_remote_fence_i(others.bits);
|
||||
else {
|
||||
/*
|
||||
* It's assumed that at least one strongly ordered operation is
|
||||
* performed on this hart between setting a hart's cpumask bit
|
||||
* and scheduling this MM context on that hart. Sending an SBI
|
||||
* remote message will do this, but in the case where no
|
||||
* messages are sent we still need to order this hart's writes
|
||||
* with flush_icache_deferred().
|
||||
*/
|
||||
smp_mb();
|
||||
}
|
||||
|
||||
preempt_enable();
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue