mirror of
https://github.com/Fishwaldo/linux-bl808.git
synced 2025-06-17 20:25:19 +00:00
Merge branches 'pm-cpufreq' and 'pm-cpuidle'
* pm-cpufreq: cpufreq: Make cpufreq_online() call driver->offline() on errors cpufreq: loongson2: Remove unused linux/sched.h headers cpufreq: sh: Remove unused linux/sched.h headers cpufreq: stats: Clean up local variable in cpufreq_stats_create_table() cpufreq: intel_pstate: hybrid: Fix build with CONFIG_ACPI unset cpufreq: sc520_freq: add 'fallthrough' to one case cpufreq: intel_pstate: Add Cometlake support in no-HWP mode cpufreq: intel_pstate: Add Icelake servers support in no-HWP mode cpufreq: intel_pstate: hybrid: CPU-specific scaling factor cpufreq: intel_pstate: hybrid: Avoid exposing two global attributes * pm-cpuidle: cpuidle: teo: remove unneeded semicolon in teo_select() cpuidle: teo: Use kerneldoc documentation in admin-guide cpuidle: teo: Rework most recent idle duration values treatment cpuidle: teo: Change the main idle state selection logic cpuidle: teo: Cosmetic modification of teo_select() cpuidle: teo: Cosmetic modifications of teo_update() intel_idle: Adjust the SKX C6 parameters if PC6 is disabled
This commit is contained in:
commit
ed562d280c
10 changed files with 540 additions and 342 deletions
|
@ -347,81 +347,8 @@ for tickless systems. It follows the same basic strategy as the ``menu`` `one
|
|||
<menu-gov_>`_: it always tries to find the deepest idle state suitable for the
|
||||
given conditions. However, it applies a different approach to that problem.
|
||||
|
||||
First, it does not use sleep length correction factors, but instead it attempts
|
||||
to correlate the observed idle duration values with the available idle states
|
||||
and use that information to pick up the idle state that is most likely to
|
||||
"match" the upcoming CPU idle interval. Second, it does not take the tasks
|
||||
that were running on the given CPU in the past and are waiting on some I/O
|
||||
operations to complete now at all (there is no guarantee that they will run on
|
||||
the same CPU when they become runnable again) and the pattern detection code in
|
||||
it avoids taking timer wakeups into account. It also only uses idle duration
|
||||
values less than the current time till the closest timer (with the scheduler
|
||||
tick excluded) for that purpose.
|
||||
|
||||
Like in the ``menu`` governor `case <menu-gov_>`_, the first step is to obtain
|
||||
the *sleep length*, which is the time until the closest timer event with the
|
||||
assumption that the scheduler tick will be stopped (that also is the upper bound
|
||||
on the time until the next CPU wakeup). That value is then used to preselect an
|
||||
idle state on the basis of three metrics maintained for each idle state provided
|
||||
by the ``CPUIdle`` driver: ``hits``, ``misses`` and ``early_hits``.
|
||||
|
||||
The ``hits`` and ``misses`` metrics measure the likelihood that a given idle
|
||||
state will "match" the observed (post-wakeup) idle duration if it "matches" the
|
||||
sleep length. They both are subject to decay (after a CPU wakeup) every time
|
||||
the target residency of the idle state corresponding to them is less than or
|
||||
equal to the sleep length and the target residency of the next idle state is
|
||||
greater than the sleep length (that is, when the idle state corresponding to
|
||||
them "matches" the sleep length). The ``hits`` metric is increased if the
|
||||
former condition is satisfied and the target residency of the given idle state
|
||||
is less than or equal to the observed idle duration and the target residency of
|
||||
the next idle state is greater than the observed idle duration at the same time
|
||||
(that is, it is increased when the given idle state "matches" both the sleep
|
||||
length and the observed idle duration). In turn, the ``misses`` metric is
|
||||
increased when the given idle state "matches" the sleep length only and the
|
||||
observed idle duration is too short for its target residency.
|
||||
|
||||
The ``early_hits`` metric measures the likelihood that a given idle state will
|
||||
"match" the observed (post-wakeup) idle duration if it does not "match" the
|
||||
sleep length. It is subject to decay on every CPU wakeup and it is increased
|
||||
when the idle state corresponding to it "matches" the observed (post-wakeup)
|
||||
idle duration and the target residency of the next idle state is less than or
|
||||
equal to the sleep length (i.e. the idle state "matching" the sleep length is
|
||||
deeper than the given one).
|
||||
|
||||
The governor walks the list of idle states provided by the ``CPUIdle`` driver
|
||||
and finds the last (deepest) one with the target residency less than or equal
|
||||
to the sleep length. Then, the ``hits`` and ``misses`` metrics of that idle
|
||||
state are compared with each other and it is preselected if the ``hits`` one is
|
||||
greater (which means that that idle state is likely to "match" the observed idle
|
||||
duration after CPU wakeup). If the ``misses`` one is greater, the governor
|
||||
preselects the shallower idle state with the maximum ``early_hits`` metric
|
||||
(or if there are multiple shallower idle states with equal ``early_hits``
|
||||
metric which also is the maximum, the shallowest of them will be preselected).
|
||||
[If there is a wakeup latency constraint coming from the `PM QoS framework
|
||||
<cpu-pm-qos_>`_ which is hit before reaching the deepest idle state with the
|
||||
target residency within the sleep length, the deepest idle state with the exit
|
||||
latency within the constraint is preselected without consulting the ``hits``,
|
||||
``misses`` and ``early_hits`` metrics.]
|
||||
|
||||
Next, the governor takes several idle duration values observed most recently
|
||||
into consideration and if at least a half of them are greater than or equal to
|
||||
the target residency of the preselected idle state, that idle state becomes the
|
||||
final candidate to ask for. Otherwise, the average of the most recent idle
|
||||
duration values below the target residency of the preselected idle state is
|
||||
computed and the governor walks the idle states shallower than the preselected
|
||||
one and finds the deepest of them with the target residency within that average.
|
||||
That idle state is then taken as the final candidate to ask for.
|
||||
|
||||
Still, at this point the governor may need to refine the idle state selection if
|
||||
it has not decided to `stop the scheduler tick <idle-cpus-and-tick_>`_. That
|
||||
generally happens if the target residency of the idle state selected so far is
|
||||
less than the tick period and the tick has not been stopped already (in a
|
||||
previous iteration of the idle loop). Then, like in the ``menu`` governor
|
||||
`case <menu-gov_>`_, the sleep length used in the previous computations may not
|
||||
reflect the real time until the closest timer event and if it really is greater
|
||||
than that time, a shallower state with a suitable target residency may need to
|
||||
be selected.
|
||||
|
||||
.. kernel-doc:: drivers/cpuidle/governors/teo.c
|
||||
:doc: teo-description
|
||||
|
||||
.. _idle-states-representation:
|
||||
|
||||
|
|
|
@ -365,6 +365,9 @@ argument is passed to the kernel in the command line.
|
|||
inclusive) including both turbo and non-turbo P-states (see
|
||||
`Turbo P-states Support`_).
|
||||
|
||||
This attribute is present only if the value exposed by it is the same
|
||||
for all of the CPUs in the system.
|
||||
|
||||
The value of this attribute is not affected by the ``no_turbo``
|
||||
setting described `below <no_turbo_attr_>`_.
|
||||
|
||||
|
@ -374,6 +377,9 @@ argument is passed to the kernel in the command line.
|
|||
Ratio of the `turbo range <turbo_>`_ size to the size of the entire
|
||||
range of supported P-states, in percent.
|
||||
|
||||
This attribute is present only if the value exposed by it is the same
|
||||
for all of the CPUs in the system.
|
||||
|
||||
This attribute is read-only.
|
||||
|
||||
.. _no_turbo_attr:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue