tcp: defer skb freeing after socket lock is released

tcp recvmsg() (or rx zerocopy) spends a fair amount of time
freeing skbs after their payload has been consumed.

A typical ~64KB GRO packet has to release ~45 page
references, eventually going to page allocator
for each of them.

Currently, this freeing is performed while socket lock
is held, meaning that there is a high chance that
BH handler has to queue incoming packets to tcp socket backlog.

This can cause additional latencies, because the user
thread has to process the backlog at release_sock() time,
and while doing so, additional frames can be added
by BH handler.

This patch adds logic to defer these frees after socket
lock is released, or directly from BH handler if possible.

Being able to free these skbs from BH handler helps a lot,
because this avoids the usual alloc/free assymetry,
when BH handler and user thread do not run on same cpu or
NUMA node.

One cpu can now be fully utilized for the kernel->user copy,
and another cpu is handling BH processing and skb/page
allocs/frees (assuming RFS is not forcing use of a single CPU)

Tested:
 100Gbit NIC
 Max throughput for one TCP_STREAM flow, over 10 runs

MTU : 1500
Before: 55 Gbit
After:  66 Gbit

MTU : 4096+(headers)
Before: 82 Gbit
After:  95 Gbit

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Eric Dumazet 2021-11-15 11:02:46 -08:00 committed by David S. Miller
parent 3df684c1a3
commit f35f821935
6 changed files with 42 additions and 2 deletions

View file

@ -1368,6 +1368,16 @@ static inline bool tcp_checksum_complete(struct sk_buff *skb)
}
bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
void __sk_defer_free_flush(struct sock *sk);
static inline void sk_defer_free_flush(struct sock *sk)
{
if (llist_empty(&sk->defer_list))
return;
__sk_defer_free_flush(sk);
}
int tcp_filter(struct sock *sk, struct sk_buff *skb);
void tcp_set_state(struct sock *sk, int state);
void tcp_done(struct sock *sk);