Commit graph

11565 commits

Author SHA1 Message Date
Linus Torvalds
e2172d8fd5 Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 kdump updates from Ingo Molnar:
 "Three kdump robustness related improvements (Joerg Roedel)"

* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/crash: Allocate enough low memory when crashkernel=high
  x86/swiotlb: Try coherent allocations with __GFP_NOWARN
  swiotlb: Warn on allocation failure in swiotlb_alloc_coherent()
2015-06-22 17:40:55 -07:00
Linus Torvalds
e75c73ad64 Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar:
 "This tree contains two main changes:

   - The big FPU code rewrite: wide reaching cleanups and reorganization
     that pulls all the FPU code together into a clean base in
     arch/x86/fpu/.

     The resulting code is leaner and faster, and much easier to
     understand.  This enables future work to further simplify the FPU
     code (such as removing lazy FPU restores).

     By its nature these changes have a substantial regression risk: FPU
     code related bugs are long lived, because races are often subtle
     and bugs mask as user-space failures that are difficult to track
     back to kernel side backs.  I'm aware of no unfixed (or even
     suspected) FPU related regression so far.

   - MPX support rework/fixes.  As this is still not a released CPU
     feature, there were some buglets in the code - should be much more
     robust now (Dave Hansen)"

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits)
  x86/fpu: Fix double-increment in setup_xstate_features()
  x86/mpx: Allow 32-bit binaries on 64-bit kernels again
  x86/mpx: Do not count MPX VMAs as neighbors when unmapping
  x86/mpx: Rewrite the unmap code
  x86/mpx: Support 32-bit binaries on 64-bit kernels
  x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps
  x86/mpx: Introduce new 'directory entry' to 'addr' helper function
  x86/mpx: Add temporary variable to reduce masking
  x86: Make is_64bit_mm() widely available
  x86/mpx: Trace allocation of new bounds tables
  x86/mpx: Trace the attempts to find bounds tables
  x86/mpx: Trace entry to bounds exception paths
  x86/mpx: Trace #BR exceptions
  x86/mpx: Introduce a boot-time disable flag
  x86/mpx: Restrict the mmap() size check to bounds tables
  x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
  x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
  x86/mpx: Use the new get_xsave_field_ptr()API
  x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
  x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
  ...
2015-06-22 17:16:11 -07:00
Linus Torvalds
b3ba283d83 Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CPU features from Ingo Molnar:
 "Various CPU feature support related changes: in particular the
  /proc/cpuinfo model name sanitization change should be monitored, it
  has a chance to break stuff.  (but really shouldn't and there are no
  regression reports)"

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu/amd: Give access to the number of nodes in a physical package
  x86/cpu: Trim model ID whitespace
  x86/cpu: Strip any /proc/cpuinfo model name field whitespace
  x86/cpu/amd: Set X86_FEATURE_EXTD_APICID for future processors
  x86/gart: Check for GART support before accessing GART registers
2015-06-22 16:43:01 -07:00
Linus Torvalds
d43e4f44ba Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups"

* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm: Clean up types in xlate_dev_mem_ptr() some more
  x86: Deinline dma_free_attrs()
  x86: Deinline dma_alloc_attrs()
  x86: Remove unused TI_cpu
  x86: Merge common 32-bit values in asm-offsets.c
2015-06-22 16:23:00 -07:00
Linus Torvalds
23b7776290 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes are:

   - lockless wakeup support for futexes and IPC message queues
     (Davidlohr Bueso, Peter Zijlstra)

   - Replace spinlocks with atomics in thread_group_cputimer(), to
     improve scalability (Jason Low)

   - NUMA balancing improvements (Rik van Riel)

   - SCHED_DEADLINE improvements (Wanpeng Li)

   - clean up and reorganize preemption helpers (Frederic Weisbecker)

   - decouple page fault disabling machinery from the preemption
     counter, to improve debuggability and robustness (David
     Hildenbrand)

   - SCHED_DEADLINE documentation updates (Luca Abeni)

   - topology CPU masks cleanups (Bartosz Golaszewski)

   - /proc/sched_debug improvements (Srikar Dronamraju)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
  sched/deadline: Remove needless parameter in dl_runtime_exceeded()
  sched: Remove superfluous resetting of the p->dl_throttled flag
  sched/deadline: Drop duplicate init_sched_dl_class() declaration
  sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
  sched/deadline: Make init_sched_dl_class() __init
  sched/deadline: Optimize pull_dl_task()
  sched/preempt: Add static_key() to preempt_notifiers
  sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
  sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
  sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
  sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
  sched/debug: Properly format runnable tasks in /proc/sched_debug
  sched/numa: Only consider less busy nodes as numa balancing destinations
  Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
  sched/fair: Prevent throttling in early pick_next_task_fair()
  preempt: Reorganize the notrace definitions a bit
  preempt: Use preempt_schedule_context() as the official tracing preemption point
  sched: Make preempt_schedule_context() function-tracing safe
  x86: Remove cpu_sibling_mask() and cpu_core_mask()
  x86: Replace cpu_**_mask() with topology_**_cpumask()
  ...
2015-06-22 15:52:04 -07:00
Linus Torvalds
6bc4c3ad36 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "These are the left over fixes from the v4.1 cycle"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf tools: Fix build breakage if prefix= is specified
  perf/x86: Honor the architectural performance monitoring version
  perf/x86/intel: Fix PMI handling for Intel PT
  perf/x86/intel/bts: Fix DS area sharing with x86_pmu events
  perf/x86: Add more Broadwell model numbers
  perf: Fix ring_buffer_attach() RCU sync, again
2015-06-22 15:45:41 -07:00
Linus Torvalds
c58267e9fa Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "Kernel side changes mostly consist of work on x86 PMU drivers:

   - x86 Intel PT (hardware CPU tracer) improvements (Alexander
     Shishkin)

   - x86 Intel CQM (cache quality monitoring) improvements (Thomas
     Gleixner)

   - x86 Intel PEBSv3 support (Peter Zijlstra)

   - x86 Intel PEBS interrupt batching support for lower overhead
     sampling (Zheng Yan, Kan Liang)

   - x86 PMU scheduler fixes and improvements (Peter Zijlstra)

  There's too many tooling improvements to list them all - here are a
  few select highlights:

  'perf bench':

      - Introduce new 'perf bench futex' benchmark: 'wake-parallel', to
        measure parallel waker threads generating contention for kernel
        locks (hb->lock). (Davidlohr Bueso)

  'perf top', 'perf report':

      - Allow disabling/enabling events dynamicaly in 'perf top':
        a 'perf top' session can instantly become a 'perf report'
        one, i.e. going from dynamic analysis to a static one,
        returning to a dynamic one is possible, to toogle the
        modes, just press 'f' to 'freeze/unfreeze' the sampling. (Arnaldo Carvalho de Melo)

      - Make Ctrl-C stop processing on TUI, allowing interrupting the load of big
        perf.data files (Namhyung Kim)

  'perf probe': (Masami Hiramatsu)

      - Support glob wildcards for function name
      - Support $params special probe argument: Collect all function arguments
      - Make --line checks validate C-style function name.
      - Add --no-inlines option to avoid searching inline functions
      - Greatly speed up 'perf probe --list' by caching debuginfo.
      - Improve --filter support for 'perf probe', allowing using its arguments
        on other commands, as --add, --del, etc.

  'perf sched':

      - Add option in 'perf sched' to merge like comms to lat output (Josef Bacik)

  Plus tons of infrastructure work - in particular preparation for
  upcoming threaded perf report support, but also lots of other work -
  and fixes and other improvements.  See (much) more details in the
  shortlog and in the git log"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (305 commits)
  perf tools: Configurable per thread proc map processing time out
  perf tools: Add time out to force stop proc map processing
  perf report: Fix sort__sym_cmp to also compare end of symbol
  perf hists browser: React to unassigned hotkey pressing
  perf top: Tell the user how to unfreeze events after pressing 'f'
  perf hists browser: Honour the help line provided by builtin-{top,report}.c
  perf hists browser: Do not exit when 'f' is pressed in 'report' mode
  perf top: Replace CTRL+z with 'f' as hotkey for enable/disable events
  perf annotate: Rename source_line_percent to source_line_samples
  perf annotate: Display total number of samples with --show-total-period
  perf tools: Ensure thread-stack is flushed
  perf top: Allow disabling/enabling events dynamicly
  perf evlist: Add toggle_enable() method
  perf trace: Fix race condition at the end of started workloads
  perf probe: Speed up perf probe --list by caching debuginfo
  perf probe: Show usage even if the last event is skipped
  perf tools: Move libtraceevent dynamic list to separated LDFLAGS variable
  perf tools: Fix a problem when opening old perf.data with different byte order
  perf tools: Ignore .config-detected in .gitignore
  perf probe: Fix to return error if no probe is added
  ...
2015-06-22 15:19:21 -07:00
Linus Torvalds
1bf7067c6e Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The main changes are:

   - 'qspinlock' support, enabled on x86: queued spinlocks - these are
     now the spinlock variant used by x86 as they outperform ticket
     spinlocks in every category.  (Waiman Long)

   - 'pvqspinlock' support on x86: paravirtualized variant of queued
     spinlocks.  (Waiman Long, Peter Zijlstra)

   - 'qrwlock' support, enabled on x86: queued rwlocks.  Similar to
     queued spinlocks, they are now the variant used by x86:

       CONFIG_ARCH_USE_QUEUED_SPINLOCKS=y
       CONFIG_QUEUED_SPINLOCKS=y
       CONFIG_ARCH_USE_QUEUED_RWLOCKS=y
       CONFIG_QUEUED_RWLOCKS=y

   - various lockdep fixlets

   - various locking primitives cleanups, further WRITE_ONCE()
     propagation"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  locking/lockdep: Remove hard coded array size dependency
  locking/qrwlock: Don't contend with readers when setting _QW_WAITING
  lockdep: Do not break user-visible string
  locking/arch: Rename set_mb() to smp_store_mb()
  locking/arch: Add WRITE_ONCE() to set_mb()
  rtmutex: Warn if trylock is called from hard/softirq context
  arch: Remove __ARCH_HAVE_CMPXCHG
  locking/rtmutex: Drop usage of __HAVE_ARCH_CMPXCHG
  locking/qrwlock: Rename QUEUE_RWLOCK to QUEUED_RWLOCKS
  locking/pvqspinlock: Rename QUEUED_SPINLOCK to QUEUED_SPINLOCKS
  locking/pvqspinlock: Replace xchg() by the more descriptive set_mb()
  locking/pvqspinlock, x86: Enable PV qspinlock for Xen
  locking/pvqspinlock, x86: Enable PV qspinlock for KVM
  locking/pvqspinlock, x86: Implement the paravirt qspinlock call patching
  locking/pvqspinlock: Implement simple paravirt support for the qspinlock
  locking/qspinlock: Revert to test-and-set on hypervisors
  locking/qspinlock: Use a simple write to grab the lock
  locking/qspinlock: Optimize for smaller NR_CPUS
  locking/qspinlock: Extract out code snippets for the next patch
  locking/qspinlock: Add pending bit
  ...
2015-06-22 14:54:22 -07:00
Linus Torvalds
fc934d4017 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:

 - Continued initialization/Kconfig updates: hide most Kconfig options
   from unsuspecting users.

   There's now a single high level configuration option:

        *
        * RCU Subsystem
        *
        Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)

   Which if answered in the negative, leaves us with a single
   interactive configuration option:

        Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)

   All the rest of the RCU options are configured automatically.  Later
   on we'll remove this single leftover configuration option as well.

 - Remove all uses of RCU-protected array indexes: replace the
   rcu_[access|dereference]_index_check() APIs with READ_ONCE() and
   rcu_lockdep_assert()

 - RCU CPU-hotplug cleanups

 - Updates to Tiny RCU: a race fix and further code shrinkage.

 - RCU torture-testing updates: fixes, speedups, cleanups and
   documentation updates.

 - Miscellaneous fixes

 - Documentation updates

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  rcutorture: Allow repetition factors in Kconfig-fragment lists
  rcutorture: Display "make oldconfig" errors
  rcutorture: Update TREE_RCU-kconfig.txt
  rcutorture: Make rcutorture scripts force RCU_EXPERT
  rcutorture: Update configuration fragments for rcutree.rcu_fanout_exact
  rcutorture: TASKS_RCU set directly, so don't explicitly set it
  rcutorture: Test SRCU cleanup code path
  rcutorture: Replace barriers with smp_store_release() and smp_load_acquire()
  locktorture: Change longdelay_us to longdelay_ms
  rcutorture: Allow negative values of nreaders to oversubscribe
  rcutorture: Exchange TREE03 and TREE08 NR_CPUS, speed up CPU hotplug
  rcutorture: Exchange TREE03 and TREE04 geometries
  locktorture: fix deadlock in 'rw_lock_irq' type
  rcu: Correctly handle non-empty Tiny RCU callback list with none ready
  rcutorture: Test both RCU-sched and RCU-bh for Tiny RCU
  rcu: Further shrink Tiny RCU by making empty functions static inlines
  rcu: Conditionally compile RCU's eqs warnings
  rcu: Remove prompt for RCU implementation
  rcu: Make RCU able to tolerate undefined CONFIG_RCU_KTHREAD_PRIO
  rcu: Make RCU able to tolerate undefined CONFIG_RCU_FANOUT_LEAF
  ...
2015-06-22 14:01:01 -07:00
Rafael J. Wysocki
3bcda76d9d Merge branch 'pm-sleep'
* pm-sleep:
  x86: Load __USER_DS into DS/ES after resume
2015-06-22 14:40:28 +02:00
Ingo Molnar
ffa64eff95 x86: Load __USER_DS into DS/ES after resume
Srinivas Pandruvada reported a problem with system resume from
suspend-to-RAM on 32-bit x86 systems where the DS register of
the CPU is set to __KERNEL_DS instead of __USER_DS on return
to user space which cases a General Protection Fault to occur.

The issue is that DS is set to __KERNEL_DS by the ACPI resume code
path while the SYSEXIT path never reloads DS/ES.  It assumes they
are still __USER_DS set at the SYSENTER time (Brian Gerst), so if
the return to user space happens to be through SYSEXIT, it will lead
to the reported GPF.

Fix the problem by setting the DS and ES registers to __USER_DS
as expected by the SYSEXIT path.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=61781
Link: http://marc.info/?l=linux-pm&m=143406648920385&w=2
Acked-by: Pavel Machek <pavel@ucw.cz>
Tested-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Ingo Molnar <mingo@kernel.org>

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-22 14:40:03 +02:00
Ingo Molnar
7ef3d7d58d Merge branches 'x86/apic', 'x86/asm', 'x86/mm' and 'x86/platform' into x86/core, to merge last updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-22 09:15:03 +02:00
Thomas Gleixner
cb17b2a674 x86/hpet: Use proper hpet device number for MSI allocation
hpet_assign_irq() is called with hpet_device->num as "hardware
interrupt number", but hpet_device->num is initialized after the
interrupt has been assigned, so it's always 0. As a consequence only
the first MSI allocation succeeds, the following ones fail because the
"hardware interrupt number" already exists.

Move the initialization of dev->num and other fields before the call
to hpet_assign_irq(), which is the ordering before the offending
commit which introduced that regression.

Fixes: "3cb96f0c9733 x86/hpet: Enhance HPET IRQ to support hierarchical irqdomains"
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1506211635010.4107@nanos
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
2015-06-21 16:38:40 +02:00
Jiang Liu
bafac298fb x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
irq == 0 is not a valid irq for a irqdomain MSI allocation, but hpet
code checks only for negative return values.

Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/558447AF.30703@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-20 12:00:58 +02:00
Borislav Petkov
04c17341b4 x86/boot: Fix overflow warning with 32-bit binutils
When building the kernel with 32-bit binutils built with support
only for the i386 target, we get the following warning:

  arch/x86/kernel/head_32.S:66: Warning: shift count out of range (32 is not between 0 and 31)

The problem is that in that case, binutils' internal type
representation is 32-bit wide and the shift range overflows.

In order to fix this, manipulate the shift expression which
creates the 4GiB constant to not overflow the shift count.

Suggested-by: Michael Matz <matz@suse.de>
Reported-and-tested-by: Enrico Mioso <mrkiko.rs@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 16:03:26 +02:00
Palik, Imre
2c33645d36 perf/x86: Honor the architectural performance monitoring version
Architectural performance monitoring, version 1, doesn't support fixed counters.

Currently, even if a hypervisor advertises support for architectural
performance monitoring version 1, perf may still try to use the fixed
counters, as the constraints are set up based on the CPU model.

This patch ensures that perf honors the architectural performance monitoring
version returned by CPUID, and it only uses the fixed counters for version 2
and above.

(Some of the ideas in this patch came from Peter Zijlstra.)

Signed-off-by: Imre Palik <imrep@amazon.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Anthony Liguori <aliguori@amazon.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433767609-1039-1-git-send-email-imrep.amz@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 09:38:48 +02:00
Alexander Shishkin
1b7b938f18 perf/x86/intel: Fix PMI handling for Intel PT
Intel PT is a separate PMU and it is not using any of the x86_pmu
code paths, which means in particular that the active_events counter
remains intact when new PT events are created.

However, PT uses the generic x86_pmu PMI handler for its PMI handling needs.

The problem here is that the latter checks active_events and in case of it
being zero, exits without calling the actual x86_pmu.handle_nmi(), which
results in unknown NMI errors and massive data loss for PT.

The effect is not visible if there are other perf events in the system
at the same time that keep active_events counter non-zero, for instance
if the NMI watchdog is running, so one needs to disable it to reproduce
the problem.

At the same time, the active_events counter besides doing what the name
suggests also implicitly serves as a PMC hardware and DS area reference
counter.

This patch adds a separate reference counter for the PMC hardware, leaving
active_events for actually counting the events and makes sure it also
counts PT and BTS events.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/87k2v92t0s.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 09:38:47 +02:00
Alexander Shishkin
6b099d9b04 perf/x86/intel/bts: Fix DS area sharing with x86_pmu events
Currently, the intel_bts driver relies on the DS area allocated by the x86_pmu
code in its event_init() path, which is a bug: creating a BTS event while
no x86_pmu events are present results in a NULL pointer dereference.

The same DS area is also used by PEBS sampling, which makes it quite a bit
trickier to have a separate one for intel_bts' purposes.

This patch makes intel_bts driver use the same DS allocation and reference
counting code as x86_pmu to make sure it is always present when either
intel_bts or x86_pmu need it.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/1434024837-9916-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 09:38:47 +02:00
Andi Kleen
4b36f1a413 perf/x86: Add more Broadwell model numbers
This patch adds additional model numbers for Broadwell to perf.
Support for Broadwell with Iris Pro (Intel Core i7-57xxC)
and support for Broadwell Server Xeon.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1434055942-28253-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 09:38:46 +02:00
Aravind Gopalakrishnan
cc2749e409 x86/cpu/amd: Give access to the number of nodes in a physical package
Stash the number of nodes in a physical processor package
locally and add an accessor to be called by interested parties.
The first user is the MCE injection module which uses it to find
the node base core in a package for injecting a certain type of
errors.

Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Rewrote the commit message, merged it with the accessor patch and unified naming. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: mchehab@osg.samsung.com
Link: http://lkml.kernel.org/r/1433868317-18417-2-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-18 11:16:06 +02:00
Feng Tang
b58d930750 x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
This question has been asked many times, and finally I found the
official document which explains the problem of HPET on Baytrail,
that it will halt in deep idle states.

Signed-off-by: Feng Tang <feng.tang@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: john.stultz@linaro.org
Cc: len.brown@intel.com
Cc: matthew.lee@intel.com
Link: http://lkml.kernel.org/r/1434361201-31743-1-git-send-email-feng.tang@intel.com
[ Prettified things a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-18 10:57:38 +02:00
Paul Gortmaker
70c4f78b23 x86: replace __init_or_module with __init in non-modular vsmp_64.c
The __init_or_module is from commit 05e12e1c4c
("x86: fix 27-rc crash on vsmp due to paravirt during module load").

But as of commit 70511134f6
("Revert "x86: don't compile vsmp_64 for 32bit") this file became
obj-y and hence is now only for built-in.  That makes any
"_or_module" support no longer necessary.

We need to distinguish between the two in order to do some header
reorganization between init.h and module.h and we don't want to
be including module.h in non-modular code.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:41 -04:00
Paul Gortmaker
5b00c1eb94 x86: perf_event_intel_pt.c: use arch_initcall to hook in enabling
This was using module_init, but the current Kconfig situation is
as follows:

In arch/x86/kernel/cpu/Makefile:

  obj-$(CONFIG_CPU_SUP_INTEL)    += perf_event_intel_pt.o perf_event_intel_bts.o

and in arch/x86/Kconfig.cpu:

  config CPU_SUP_INTEL
        default y
        bool "Support Intel processors" if PROCESSOR_SELECT

So currently, the end user can not build this code into a module.
If in the future, there is desire for this to be modular, then
it can be changed to include <linux/module.h> and use module_init.

But currently, in the non-modular case, a module_init becomes a
device_initcall.  But this really isn't a device, so we should
choose a more appropriate initcall bucket to put it in.

The obvious choice here seems to be arch_initcall, but that does
make it earlier than it was currently through device_initcall.
As long as perf_pmu_register() is functional, we should be OK.

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:35 -04:00
Paul Gortmaker
ca41d24cf5 x86: perf_event_intel_bts.c: use arch_initcall to hook in enabling
This was using module_init, but the current Kconfig situation is
as follows:

In arch/x86/kernel/cpu/Makefile:

  obj-$(CONFIG_CPU_SUP_INTEL)    += perf_event_intel_pt.o perf_event_intel_bts.o

and in arch/x86/Kconfig.cpu:

  config CPU_SUP_INTEL
        default y
        bool "Support Intel processors" if PROCESSOR_SELECT

So currently, the end user can not build this code into a module.
If in the future, there is desire for this to be modular, then
it can be changed to include <linux/module.h> and use module_init.

But currently, in the non-modular case, a module_init becomes a
device_initcall.  But this really isn't a device, so we should
choose a more appropriate initcall bucket to put it in.

The obvious choice here seems to be arch_initcall, but that does
make it earlier than it was currently through device_initcall.
As long as perf_pmu_register() is functional, we should be OK.

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:35 -04:00
Paul Gortmaker
1206f53589 x86: don't use module_init for non-modular core bootflag code
The bootflag.o is obj-y (always built in).  It will never be
modular, so using module_init as an alias for __initcall is
somewhat misleading.

Fix this up now, so that we can relocate module_init from
init.h into module.h in the future.  If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing.

Note that direct use of __initcall is discouraged, vs. one
of the priority categorized subgroups.  As __initcall gets
mapped onto device_initcall, our use of arch_initcall (which
makes sense for arch code) will thus change this registration
from level 6-device to level 3-arch (i.e. slightly earlier).
However no observable impact of that small difference has
been observed during testing, or is expected.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:34 -04:00
Paul Gortmaker
d54b675a6b x86: don't use module_init in non-modular devicetree.c code
The devicetree.o is built for "OF" -- which is bool, and hence
this code is either present or absent.  It will never be modular,
so using module_init as an alias for __initcall can be somewhat
misleading.

Fix this up now, so that we can relocate module_init from
init.h into module.h in the future.  If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing.

Note that direct use of __initcall is discouraged, vs. one
of the priority categorized subgroups.  As __initcall gets
mapped onto device_initcall, our use of device_initcall
directly in this change means that the runtime impact is
zero -- it will remain at level 6 in initcall ordering.

Reported-by: kbuild test robot <fengguang.wu@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:29 -04:00
Dave Hansen
a842400367 x86/fpu: Fix double-increment in setup_xstate_features()
I noticed that my MPX tracepoints were producing garbage for the
lower and upper bounds:

	mpx_bounds_register_exception: address referenced: 0x00007fffffffccb7 bounds: lower: 0x0 ~upper: 0xffffffffffffffff
	mpx_bounds_register_exception: address referenced: 0x00007fffffffccbf bounds: lower: 0x0 ~upper: 0xffffffffffffffff

This is, of course, bogus because 0x00007fffffffccbf is *within*
the bounds.  I assumed that my instruction decoder was bad and
went looking at it.  But I eventually realized that I was
getting a '0' offset back from xstate_offsets[BNDREGS].

It was being skipped in the initialization, which is obviously
bogus, so remove the extra leaf++.

This also goes an initializes xstate_offsets/sizes[] to -1 so
so that bugs like this will oops instead of silently failing
in interesting ways.

This was introduced by:

	39f1acd ("x86/fpu/xstate: Don't assume the first zero xfeatures zero bit means the end")

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@sr71.net
Link: http://lkml.kernel.org/r/20150611193400.2E0B00DB@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-12 10:48:12 +02:00
Joerg Roedel
94fb933418 x86/crash: Allocate enough low memory when crashkernel=high
When the crash kernel is loaded above 4GiB in memory, the
first kernel allocates only 72MiB of low-memory for the DMA
requirements of the second kernel. On systems with many
devices this is not enough and causes device driver
initialization errors and failed crash dumps. Testing by
SUSE and Redhat has shown that 256MiB is a good default
value for now and the discussion has lead to this value as
well. So set this default value to 256MiB to make sure there
is enough memory available for DMA.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
[ Reflow comment. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/1433500202-25531-4-git-send-email-joro@8bytes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-11 08:28:39 +02:00
Joerg Roedel
186dfc9d69 x86/swiotlb: Try coherent allocations with __GFP_NOWARN
When we boot a kdump kernel in high memory, there is by
default only 72MB of low memory available. The swiotlb code
takes 64MB of it (by default) so that there are only 8MB
left to allocate from. On systems with many devices this
causes page allocator warnings from
dma_generic_alloc_coherent():

  systemd-udevd: page allocation failure: order:0, mode:0x280d4
  CPU: 0 PID: 197 Comm: systemd-udevd Tainted: G        W
  3.12.28-4-default #1 Hardware name: HP ProLiant DL980 G7, BIOS
  P66 07/30/2012  ffff8800781335e0 ffffffff8150b1db 00000000000280d4 ffffffff8113af90
   0000000000000000 0000000000000000 ffff88007efdbb00 0000000100000000
   0000000000000000 0000000000000000 0000000000000000 0000000000000001
  Call Trace:
    dump_trace+0x7d/0x2d0
    show_stack_log_lvl+0x94/0x170
    show_stack+0x21/0x50
    dump_stack+0x41/0x51
    warn_alloc_failed+0xf0/0x160
    __alloc_pages_slowpath+0x72f/0x796
    __alloc_pages_nodemask+0x1ea/0x210
    dma_generic_alloc_coherent+0x96/0x140
    x86_swiotlb_alloc_coherent+0x1c/0x50
    ttm_dma_pool_alloc_new_pages+0xab/0x320 [ttm]
    ttm_dma_populate+0x3ce/0x640 [ttm]
    ttm_tt_bind+0x36/0x60 [ttm]
    ttm_bo_handle_move_mem+0x55f/0x5c0 [ttm]
    ttm_bo_move_buffer+0x105/0x130 [ttm]
    ttm_bo_validate+0xc1/0x130 [ttm]
    ttm_bo_init+0x24b/0x400 [ttm]
    radeon_bo_create+0x16c/0x200 [radeon]
    radeon_ring_init+0x11e/0x2b0 [radeon]
    r100_cp_init+0x123/0x5b0 [radeon]
    r100_startup+0x194/0x230 [radeon]
    r100_init+0x223/0x410 [radeon]
    radeon_device_init+0x6af/0x830 [radeon]
    radeon_driver_load_kms+0x89/0x180 [radeon]
    drm_get_pci_dev+0x121/0x2f0 [drm]
    local_pci_probe+0x39/0x60
    pci_device_probe+0xa9/0x120
    driver_probe_device+0x9d/0x3d0
    __driver_attach+0x8b/0x90
    bus_for_each_dev+0x5b/0x90
    bus_add_driver+0x1f8/0x2c0
    driver_register+0x5b/0xe0
    do_one_initcall+0xf2/0x1a0
    load_module+0x1207/0x1c70
    SYSC_finit_module+0x75/0xa0
    system_call_fastpath+0x16/0x1b
    0x7fac533d2788

After these warnings the code enters a fall-back path and
allocated directly from the swiotlb aperture in the end.
So remove these warnings as this is not a fatal error.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
[ Simplify, reflow comment. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/1433500202-25531-3-git-send-email-joro@8bytes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-11 08:28:38 +02:00
Dave Hansen
b0e9b09b3b x86: Make is_64bit_mm() widely available
The uprobes code has a nice helper, is_64bit_mm(), that consults
both the runtime and compile-time flags for 32-bit support.
Instead of reinventing the wheel, pull it in to an x86 header so
we can use it for MPX.

I prefer passing the 'mm' around to test_thread_flag(TIF_IA32)
because it makes it explicit where the context is coming from.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150607183704.F0209999@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:32 +02:00
Dave Hansen
e7126cf5f1 x86/mpx: Trace #BR exceptions
This is the first in a series of MPX tracing patches.
I've found these extremely useful in the process of
debugging applications and the kernel code itself.

This exception hooks in to the bounds (#BR) exception
very early and allows capturing the key registers which
would influence how the exception is handled.

Note that bndcfgu/bndstatus are technically still
64-bit registers even in 32-bit mode.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150607183703.5FE2619A@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:31 +02:00
Dave Hansen
8c3641e957 x86/mpx: Introduce a boot-time disable flag
MPX has the _potential_ to cause some issues.  Say part of your
init system tried to protect one of its components from buffer
overflows with MPX.  If there were a false positive, it's
possible that MPX could keep a system from booting.

MPX could also potentially cause performance issues since it is
present in hot paths like the unmap path.

Allow it to be disabled at boot time.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150607183702.2E8B77AB@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:31 +02:00
Dave Hansen
46a6e0cf1c x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
The MPX code can only work on the current task.  You can not,
for instance, enable MPX management in another process or
thread. You can also not handle a fault for another process or
thread.

Despite this, we pass a task_struct around prolifically.  This
patch removes all of the task struct passing for code paths
where the code can not deal with another task (which turns out
to be all of them).

This has no functional changes.  It's just a cleanup.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/20150607183702.6A81DA2C@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:30 +02:00
Dave Hansen
a84eeaa96b x86/mpx: Use the new get_xsave_field_ptr()API
The MPX registers (bndcsr/bndcfgu/bndstatus) are not directly
accessible via normal instructions.  They essentially act as
if they were floating point registers and are saved/restored
along with those registers.

There are two main paths in the MPX code where we care about
the contents of these registers:

	1. #BR (bounds) faults
	2. the prctl() code where we are setting MPX up

Both of those paths _might_ be called without the FPU having
been used.  That means that 'tsk->thread.fpu.state' might
never be allocated.

Also, fpu_save_init() is not preempt-safe.  It was a bug to
call it without disabling preemption.  The new
get_xsave_addr() calls unlazy_fpu() instead and properly
disables preemption.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave@sr71.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/20150607183701.BC0D37CF@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:30 +02:00
Dave Hansen
04cd027bcb x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
The MPX code appears is calling a low-level FPU function
(copy_fpregs_to_fpstate()).  This function is not able to
be called in all contexts, although it is safe to call
directly in some cases.

Although probably correct, the current code is ugly and
potentially error-prone.  So, add a wrapper that calls
the (slightly) higher-level fpu__save() (which is preempt-
safe) and also ensures that we even *have* an FPU context
(in the case that this was called when in lazy FPU mode).

Ingo had this to say about the details about when we need
preemption disabled:

> it's indeed generally unsafe to access/copy FPU registers with preemption enabled,
> for two reasons:
>
>   - on older systems that use FSAVE the instruction destroys FPU register
>     contents, which has to be handled carefully
>
>   - even on newer systems if we copy to FPU registers (which this code doesn't)
>     then we don't want a context switch to occur in the middle of it, because a
>     context switch will write to the fpstate, potentially overwriting our new data
>     with old FPU state.
>
> But it's safe to access FPU registers with preemption enabled in a couple of
> special cases:
>
>   - potentially destructively saving FPU registers: the signal handling code does
>     this in copy_fpstate_to_sigframe(), because it can rely on the signal restore
>     side to restore the original FPU state.
>
>   - reading FPU registers on modern systems: we don't do this anywhere at the
>     moment, mostly to keep symmetry with older systems where FSAVE is
>     destructive.
>
>   - initializing FPU registers on modern systems: fpu__clear() does this. Here
>     it's safe because we don't copy from the fpstate.
>
>   - directly writing FPU registers from user-space memory (!). We do this in
>     fpu__restore_sig(), and it's safe because neither context switches nor
>     irq-handler FPU use can corrupt the source context of the copy (which is
>     user-space memory).
>
> Note that the MPX code's current use of copy_fpregs_to_fpstate() was safe I think,
> because:
>
>  - MPX is predicated on eagerfpu, so the destructive F[N]SAVE instruction won't be
>    used.
>
>  - the code was only reading FPU registers, and was doing it only in places that
>    guaranteed that an FPU state was already active (i.e. didn't do it in
>    kthreads)

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave@sr71.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/20150607183700.AA881696@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:29 +02:00
Dave Hansen
0c4109bec0 x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
get_xsave_addr() assumes that if an xsave bit is present in the
hardware (pcntxt_mask) that it is present in a given xsave
buffer.  Due to an bug in the xsave code on all of the systems
that have MPX (and thus all the users of this code), that has
been a true assumption.

But, the bug is getting fixed, so our assumption is not going
to hold any more.

It's quite possible (and normal) for an enabled state to be
present on 'pcntxt_mask', but *not* in 'xstate_bv'.  We need
to consult 'xstate_bv'.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150607183700.1E739B34@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 12:24:29 +02:00
Ingo Molnar
15c1247953 Revert "perf/x86/intel/uncore: Move uncore_box_init() out of driver initialization"
This reverts commit c05199e5a5.

Vince Weaver reported the following crash while perf fuzzing:

[   79.473121] kernel BUG at mm/vmalloc.c:1335!
[   79.694391] Call Trace:
[   79.696997]  <IRQ>
[   79.699090]  [<ffffffff811b2130>] get_vm_area_caller+0x40/0x50
[   79.705505]  [<ffffffff81039f4d>] ? snb_uncore_imc_init_box+0x6d/0x90
[   79.712414]  [<ffffffff810635e5>] __ioremap_caller+0x195/0x350
[   79.718610]  [<ffffffff81039f4d>] ? snb_uncore_imc_init_box+0x6d/0x90
[   79.725462]  [<ffffffff81427f6b>] ? debug_object_activate+0x14b/0x1e0
[   79.732346]  [<ffffffff810637b7>] ioremap_nocache+0x17/0x20
[   79.738283]  [<ffffffff81039f4d>] snb_uncore_imc_init_box+0x6d/0x90
[   79.744945]  [<ffffffff81039cf7>] snb_uncore_imc_event_start+0xb7/0x110
[   79.752020]  [<ffffffff81039d97>] snb_uncore_imc_event_add+0x47/0x60
[   79.758832]  [<ffffffff81162cbb>] event_sched_in.isra.85+0xfb/0x330
[   79.765519]  [<ffffffff81162f5f>] group_sched_in+0x6f/0x1e0
[   79.771481]  [<ffffffff8101df1a>] ? native_sched_clock+0x2a/0x90
[   79.777858]  [<ffffffff811637bc>] __perf_event_enable+0x25c/0x2a0
[   79.784418]  [<ffffffff810f3e69>] ? tick_nohz_irq_exit+0x29/0x30
[   79.790820]  [<ffffffff8115ef30>] ? cpu_clock_event_start+0x40/0x40
[   79.797546]  [<ffffffff8115ef80>] remote_function+0x50/0x60
[   79.803535]  [<ffffffff810f8cd1>] flush_smp_call_function_queue+0x81/0x180
[   79.810840]  [<ffffffff810f9763>] generic_smp_call_function_single_interrupt+0x13/0x60
[   79.819328]  [<ffffffff8104b5e8>] smp_trace_call_function_single_interrupt+0x38/0xc0
[   79.827614]  [<ffffffff816de9be>] trace_call_function_single_interrupt+0x6e/0x80
[   79.835465]  <EOI>
[   79.837543]  [<ffffffff8156e8b5>] ? cpuidle_enter_state+0x65/0x160
[   79.844377]  [<ffffffff8156e8a1>] ? cpuidle_enter_state+0x51/0x160
[   79.851015]  [<ffffffff8156e9e7>] cpuidle_enter+0x17/0x20
[   79.856791]  [<ffffffff810b6e39>] cpu_startup_entry+0x399/0x440
[   79.863165]  [<ffffffff816c9ddb>] rest_init+0xbb/0xd0

The offending commit is clearly confused as it moves heavy initialization
work into IPI context.

Revert it.

Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Yan, Zheng <zheng.z.yan@intel.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-09 11:44:37 +02:00
Ingo Molnar
bace7117d3 x86/asm/entry: (Re-)rename __NR_entry_INT80_compat_max to __NR_syscall_compat_max
Brian Gerst noticed that I did a weird rename in the following commit:

   b2502b418e ("x86/asm/entry: Untangle 'system_call' into two entry points: entry_SYSCALL_64 and entry_INT80_32")

which renamed __NR_ia32_syscall_max to __NR_entry_INT80_compat_max.

Now the original name was a misnomer, but the new one is a misnomer as well,
as all the 32-bit compat syscall entry points (sysenter, syscall) share the
system call table, not just the INT80 based one.

Rename it to __NR_syscall_compat_max.

Reported-by: Brian Gerst <brgerst@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-08 23:43:38 +02:00
Ingo Molnar
9dda1658a9 Merge branch 'x86/asm' into x86/core, to prepare for new patch
Collect all changes to arch/x86/entry/entry_64.S, before applying
patch that changes most of the file.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-08 20:48:20 +02:00
Bjorn Helgaas
633adc711d PCI: Remove unnecessary #includes of <asm/pci.h>
In include/linux/pci.h, we already #include <asm/pci.h>, so we don't need
to include <asm/pci.h> directly.

Remove the unnecessary includes.  All the files here already include
<linux/pci.h>.

Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Simon Horman <horms+renesas@verge.net.au>	# sh
Acked-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-08 07:56:09 -05:00
Ingo Molnar
b2502b418e x86/asm/entry: Untangle 'system_call' into two entry points: entry_SYSCALL_64 and entry_INT80_32
The 'system_call' entry points differ starkly between native 32-bit and 64-bit
kernels: on 32-bit kernels it defines the INT 0x80 entry point, while on
64-bit it's the SYSCALL entry point.

This is pretty confusing when looking at generic code, and it also obscures
the nature of the entry point at the assembly level.

So unangle this by splitting the name into its two uses:

	system_call (32) -> entry_INT80_32
	system_call (64) -> entry_SYSCALL_64

As per the generic naming scheme for x86 system call entry points:

	entry_MNEMONIC_qualifier

where 'qualifier' is one of _32, _64 or _compat.

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-08 09:14:21 +02:00
Ingo Molnar
4c8cd0c50d x86/asm/entry: Untangle 'ia32_sysenter_target' into two entry points: entry_SYSENTER_32 and entry_SYSENTER_compat
So the SYSENTER instruction is pretty quirky and it has different behavior
depending on bitness and CPU maker.

Yet we create a false sense of coherency by naming it 'ia32_sysenter_target'
in both of the cases.

Split the name into its two uses:

	ia32_sysenter_target (32)    -> entry_SYSENTER_32
	ia32_sysenter_target (64)    -> entry_SYSENTER_compat

As per the generic naming scheme for x86 system call entry points:

	entry_MNEMONIC_qualifier

where 'qualifier' is one of _32, _64 or _compat.

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-08 08:47:46 +02:00
Ingo Molnar
2cd23553b4 x86/asm/entry: Rename compat syscall entry points
Rename the following system call entry points:

	ia32_cstar_target       -> entry_SYSCALL_compat
	ia32_syscall            -> entry_INT80_compat

The generic naming scheme for x86 system call entry points is:

	entry_MNEMONIC_qualifier

where 'qualifier' is one of _32, _64 or _compat.

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-08 08:47:36 +02:00
Peter Zijlstra
a3d86542de perf/x86/intel/pebs: Add PEBSv3 decoding
PEBSv3 as present on Skylake fixed the long standing issue of the
status bits. They now really reflect the events that generated the
record.

Tested-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:09:16 +02:00
Kan Liang
f38b0dbb49 perf/x86/intel: Introduce PERF_RECORD_LOST_SAMPLES
After enlarging the PEBS interrupt threshold, there may be some mixed up
PEBS samples which are discarded by the kernel.

This patch makes the kernel emit a PERF_RECORD_LOST_SAMPLES record with
the number of possible discarded records when it is impossible to demux
the samples.

It makes sure the user is not left in the dark about such discards.

Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1431285195-14269-8-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:09:02 +02:00
Yan, Zheng
156174999d perf/intel/x86: Enlarge the PEBS buffer
Currently the PEBS buffer size is 4k, it can only hold about 21
PEBS records. This patch enlarges the PEBS buffer size to 64k
(the same as the BTS buffer).

64k memory can hold about 330 PEBS records. This will significantly
reduce the number of PMIs when batched PEBS interrupts are enabled.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-7-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:57 +02:00
Yan, Zheng
9c964efa43 perf/x86/intel: Drain the PEBS buffer during context switches
Flush the PEBS buffer during context switches if PEBS interrupt threshold
is larger than one. This allows perf to supply TID for sample outputs.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-6-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:54 +02:00
Yan, Zheng
3569c0d7c5 perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)
PEBS always had the capability to log samples to its buffers without
an interrupt. Traditionally perf has not used this but always set the
PEBS threshold to one.

For frequently occurring events (like cycles or branches or load/store)
this in term requires using a relatively high sampling period to avoid
overloading the system, by only processing PMIs. This in term increases
sampling error.

For the common cases we still need to use the PMI because the PEBS
hardware has various limitations. The biggest one is that it can not
supply a callgraph. It also requires setting a fixed period, as the
hardware does not support adaptive period. Another issue is that it
cannot supply a time stamp and some other options. To supply a TID it
requires flushing on context switch. It can however supply the IP, the
load/store address, TSX information, registers, and some other things.

So we can make PEBS work for some specific cases, basically as long as
you can do without a callgraph and can set the period you can use this
new PEBS mode.

The main benefit is the ability to support much lower sampling period
(down to -c 1000) without extensive overhead.

One use cases is for example to increase the resolution of the c2c tool.
Another is double checking when you suspect the standard sampling has
too much sampling error.

Some numbers on the overhead, using cycle soak, comparing the elapsed
time from "kernbench -M -H" between plain (threshold set to one) and
multi (large threshold).

The test command for plain:
  "perf record --time -e cycles:p -c $period -- kernbench -M -H"

The test command for multi:
  "perf record --no-time -e cycles:p -c $period -- kernbench -M -H"

( The only difference of test command between multi and plain is time
  stamp options. Since time stamp is not supported by large PEBS
  threshold, it can be used as a flag to indicate if large threshold is
  enabled during the test. )

	period    plain(Sec)  multi(Sec)  Delta
	10003     32.7        16.5        16.2
	20003     30.2        16.2        14.0
	40003     18.6        14.1        4.5
	80003     16.8        14.6        2.2
	100003    16.9        14.1        2.8
	800003    15.4        15.7        -0.3
	1000003   15.3        15.2        0.2
	2000003   15.3        15.1        0.1

With periods below 100003, plain (threshold one) cause much more
overhead. With 10003 sampling period, the Elapsed Time for multi is
even 2X faster than plain.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:49 +02:00
Yan, Zheng
21509084f9 perf/x86/intel: Handle multiple records in the PEBS buffer
When the PEBS interrupt threshold is larger than one record and the
machine supports multiple PEBS events, the records of these events are
mixed up and we need to demultiplex them.

Demuxing the records is hard because the hardware is deficient. The
hardware has two issues that, when combined, create impossible
scenarios to demux.

The first issue is that the 'status' field of the PEBS record is a copy
of the GLOBAL_STATUS MSR at PEBS assist time. To see why this is a
problem let us first describe the regular PEBS cycle:

A) the CTRn value reaches 0:
  - the corresponding bit in GLOBAL_STATUS gets set
  - we start arming the hardware assist
  < some unspecified amount of time later -- this could cover multiple
    events of interest >

B) the hardware assist is armed, any next event will trigger it

C) a matching event happens:
  - the hardware assist triggers and generates a PEBS record
    this includes a copy of GLOBAL_STATUS at this moment
  - if we auto-reload we (re)set CTRn
  - we clear the relevant bit in GLOBAL_STATUS

Now consider the following chain of events:

  A0, B0, A1, C0

The event generated for counter 0 will include a status with counter 1
set, even though its not at all related to the record. A similar thing
can happen with a !PEBS event if it just happens to overflow at the
right moment.

The second issue is that the hardware will only emit one record for two
or more counters if the event that triggers the assist is 'close'. The
'close' can be several cycles. In some cases even the complete assist,
if the event is something that doesn't need retirement.

For instance, consider this chain of events:

  A0, B0, A1, B1, C01

Where C01 is an event that triggers both hardware assists, we will
generate but a single record, but again with both counters listed in the
status field.

This time the record pertains to both events.

Note that these two cases are different but undistinguishable with the
data as generated. Therefore demuxing records with multiple PEBS bits
(we can safely ignore status bits for !PEBS counters) is impossible.

Furthermore we cannot emit the record to both events because that might
cause a data leak -- the events might not have the same privileges -- so
what this patch does is discard such events.

The assumption/hope is that such discards will be rare.

Here lists some possible ways you may get high discard rate.

  - when you count the same thing multiple times. But it is not a useful
    configuration.
  - you can be unfortunate if you measure with a userspace only PEBS
    event along with either a kernel or unrestricted PEBS event. Imagine
    the event triggering and setting the overflow flag right before
    entering the kernel. Then all kernel side events will end up with
    multiple bits set.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
[ Changelog improvements. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-4-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:45 +02:00
Yan, Zheng
43cf76312f perf/x86/intel: Introduce setup_pebs_sample_data()
Move code that sets up the PEBS sample data to a separate function.

Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@infradead.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1430940834-8964-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 16:08:40 +02:00