/* * Copyright (C) 2009 Red Hat, Inc. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. */ #include <linux/mm.h> #include <linux/sched.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/mmu_notifier.h> #include <linux/rmap.h> #include <linux/swap.h> #include <asm/tlb.h> #include <asm/pgalloc.h> #include "internal.h" unsigned long transparent_hugepage_flags __read_mostly = (1<<TRANSPARENT_HUGEPAGE_FLAG); #ifdef CONFIG_SYSFS static ssize_t double_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag enabled, enum transparent_hugepage_flag req_madv) { if (test_bit(enabled, &transparent_hugepage_flags)) { VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); return sprintf(buf, "[always] madvise never\n"); } else if (test_bit(req_madv, &transparent_hugepage_flags)) return sprintf(buf, "always [madvise] never\n"); else return sprintf(buf, "always madvise [never]\n"); } static ssize_t double_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag enabled, enum transparent_hugepage_flag req_madv) { if (!memcmp("always", buf, min(sizeof("always")-1, count))) { set_bit(enabled, &transparent_hugepage_flags); clear_bit(req_madv, &transparent_hugepage_flags); } else if (!memcmp("madvise", buf, min(sizeof("madvise")-1, count))) { clear_bit(enabled, &transparent_hugepage_flags); set_bit(req_madv, &transparent_hugepage_flags); } else if (!memcmp("never", buf, min(sizeof("never")-1, count))) { clear_bit(enabled, &transparent_hugepage_flags); clear_bit(req_madv, &transparent_hugepage_flags); } else return -EINVAL; return count; } static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return double_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); } static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return double_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); } static struct kobj_attribute enabled_attr = __ATTR(enabled, 0644, enabled_show, enabled_store); static ssize_t single_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag) { if (test_bit(flag, &transparent_hugepage_flags)) return sprintf(buf, "[yes] no\n"); else return sprintf(buf, "yes [no]\n"); } static ssize_t single_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag) { if (!memcmp("yes", buf, min(sizeof("yes")-1, count))) { set_bit(flag, &transparent_hugepage_flags); } else if (!memcmp("no", buf, min(sizeof("no")-1, count))) { clear_bit(flag, &transparent_hugepage_flags); } else return -EINVAL; return count; } /* * Currently defrag only disables __GFP_NOWAIT for allocation. A blind * __GFP_REPEAT is too aggressive, it's never worth swapping tons of * memory just to allocate one more hugepage. */ static ssize_t defrag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return double_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); } static ssize_t defrag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return double_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); } static struct kobj_attribute defrag_attr = __ATTR(defrag, 0644, defrag_show, defrag_store); #ifdef CONFIG_DEBUG_VM static ssize_t debug_cow_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return single_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); } static ssize_t debug_cow_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return single_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); } static struct kobj_attribute debug_cow_attr = __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); #endif /* CONFIG_DEBUG_VM */ static struct attribute *hugepage_attr[] = { &enabled_attr.attr, &defrag_attr.attr, #ifdef CONFIG_DEBUG_VM &debug_cow_attr.attr, #endif NULL, }; static struct attribute_group hugepage_attr_group = { .attrs = hugepage_attr, .name = "transparent_hugepage", }; #endif /* CONFIG_SYSFS */ static int __init hugepage_init(void) { #ifdef CONFIG_SYSFS int err; err = sysfs_create_group(mm_kobj, &hugepage_attr_group); if (err) printk(KERN_ERR "hugepage: register sysfs failed\n"); #endif return 0; } module_init(hugepage_init) static int __init setup_transparent_hugepage(char *str) { int ret = 0; if (!str) goto out; if (!strcmp(str, "always")) { set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } else if (!strcmp(str, "madvise")) { clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } else if (!strcmp(str, "never")) { clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); ret = 1; } out: if (!ret) printk(KERN_WARNING "transparent_hugepage= cannot parse, ignored\n"); return ret; } __setup("transparent_hugepage=", setup_transparent_hugepage); static void prepare_pmd_huge_pte(pgtable_t pgtable, struct mm_struct *mm) { assert_spin_locked(&mm->page_table_lock); /* FIFO */ if (!mm->pmd_huge_pte) INIT_LIST_HEAD(&pgtable->lru); else list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); mm->pmd_huge_pte = pgtable; } static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pmd = pmd_mkwrite(pmd); return pmd; } static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, struct page *page) { int ret = 0; pgtable_t pgtable; VM_BUG_ON(!PageCompound(page)); pgtable = pte_alloc_one(mm, haddr); if (unlikely(!pgtable)) { put_page(page); return VM_FAULT_OOM; } clear_huge_page(page, haddr, HPAGE_PMD_NR); __SetPageUptodate(page); spin_lock(&mm->page_table_lock); if (unlikely(!pmd_none(*pmd))) { spin_unlock(&mm->page_table_lock); put_page(page); pte_free(mm, pgtable); } else { pmd_t entry; entry = mk_pmd(page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); entry = pmd_mkhuge(entry); /* * The spinlocking to take the lru_lock inside * page_add_new_anon_rmap() acts as a full memory * barrier to be sure clear_huge_page writes become * visible after the set_pmd_at() write. */ page_add_new_anon_rmap(page, vma, haddr); set_pmd_at(mm, haddr, pmd, entry); prepare_pmd_huge_pte(pgtable, mm); add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); spin_unlock(&mm->page_table_lock); } return ret; } static inline struct page *alloc_hugepage(int defrag) { return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT), HPAGE_PMD_ORDER); } int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags) { struct page *page; unsigned long haddr = address & HPAGE_PMD_MASK; pte_t *pte; if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; page = alloc_hugepage(transparent_hugepage_defrag(vma)); if (unlikely(!page)) goto out; return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page); } out: /* * Use __pte_alloc instead of pte_alloc_map, because we can't * run pte_offset_map on the pmd, if an huge pmd could * materialize from under us from a different thread. */ if (unlikely(__pte_alloc(mm, vma, pmd, address))) return VM_FAULT_OOM; /* if an huge pmd materialized from under us just retry later */ if (unlikely(pmd_trans_huge(*pmd))) return 0; /* * A regular pmd is established and it can't morph into a huge pmd * from under us anymore at this point because we hold the mmap_sem * read mode and khugepaged takes it in write mode. So now it's * safe to run pte_offset_map(). */ pte = pte_offset_map(pmd, address); return handle_pte_fault(mm, vma, address, pte, pmd, flags); } int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *vma) { struct page *src_page; pmd_t pmd; pgtable_t pgtable; int ret; ret = -ENOMEM; pgtable = pte_alloc_one(dst_mm, addr); if (unlikely(!pgtable)) goto out; spin_lock(&dst_mm->page_table_lock); spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); ret = -EAGAIN; pmd = *src_pmd; if (unlikely(!pmd_trans_huge(pmd))) { pte_free(dst_mm, pgtable); goto out_unlock; } if (unlikely(pmd_trans_splitting(pmd))) { /* split huge page running from under us */ spin_unlock(&src_mm->page_table_lock); spin_unlock(&dst_mm->page_table_lock); pte_free(dst_mm, pgtable); wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ goto out; } src_page = pmd_page(pmd); VM_BUG_ON(!PageHead(src_page)); get_page(src_page); page_dup_rmap(src_page); add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); pmdp_set_wrprotect(src_mm, addr, src_pmd); pmd = pmd_mkold(pmd_wrprotect(pmd)); set_pmd_at(dst_mm, addr, dst_pmd, pmd); prepare_pmd_huge_pte(pgtable, dst_mm); ret = 0; out_unlock: spin_unlock(&src_mm->page_table_lock); spin_unlock(&dst_mm->page_table_lock); out: return ret; } /* no "address" argument so destroys page coloring of some arch */ pgtable_t get_pmd_huge_pte(struct mm_struct *mm) { pgtable_t pgtable; assert_spin_locked(&mm->page_table_lock); /* FIFO */ pgtable = mm->pmd_huge_pte; if (list_empty(&pgtable->lru)) mm->pmd_huge_pte = NULL; else { mm->pmd_huge_pte = list_entry(pgtable->lru.next, struct page, lru); list_del(&pgtable->lru); } return pgtable; } static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, pmd_t orig_pmd, struct page *page, unsigned long haddr) { pgtable_t pgtable; pmd_t _pmd; int ret = 0, i; struct page **pages; pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, GFP_KERNEL); if (unlikely(!pages)) { ret |= VM_FAULT_OOM; goto out; } for (i = 0; i < HPAGE_PMD_NR; i++) { pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); if (unlikely(!pages[i])) { while (--i >= 0) put_page(pages[i]); kfree(pages); ret |= VM_FAULT_OOM; goto out; } } for (i = 0; i < HPAGE_PMD_NR; i++) { copy_user_highpage(pages[i], page + i, haddr + PAGE_SHIFT*i, vma); __SetPageUptodate(pages[i]); cond_resched(); } spin_lock(&mm->page_table_lock); if (unlikely(!pmd_same(*pmd, orig_pmd))) goto out_free_pages; VM_BUG_ON(!PageHead(page)); pmdp_clear_flush_notify(vma, haddr, pmd); /* leave pmd empty until pte is filled */ pgtable = get_pmd_huge_pte(mm); pmd_populate(mm, &_pmd, pgtable); for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { pte_t *pte, entry; entry = mk_pte(pages[i], vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); page_add_new_anon_rmap(pages[i], vma, haddr); pte = pte_offset_map(&_pmd, haddr); VM_BUG_ON(!pte_none(*pte)); set_pte_at(mm, haddr, pte, entry); pte_unmap(pte); } kfree(pages); mm->nr_ptes++; smp_wmb(); /* make pte visible before pmd */ pmd_populate(mm, pmd, pgtable); page_remove_rmap(page); spin_unlock(&mm->page_table_lock); ret |= VM_FAULT_WRITE; put_page(page); out: return ret; out_free_pages: spin_unlock(&mm->page_table_lock); for (i = 0; i < HPAGE_PMD_NR; i++) put_page(pages[i]); kfree(pages); goto out; } int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, pmd_t orig_pmd) { int ret = 0; struct page *page, *new_page; unsigned long haddr; VM_BUG_ON(!vma->anon_vma); spin_lock(&mm->page_table_lock); if (unlikely(!pmd_same(*pmd, orig_pmd))) goto out_unlock; page = pmd_page(orig_pmd); VM_BUG_ON(!PageCompound(page) || !PageHead(page)); haddr = address & HPAGE_PMD_MASK; if (page_mapcount(page) == 1) { pmd_t entry; entry = pmd_mkyoung(orig_pmd); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) update_mmu_cache(vma, address, entry); ret |= VM_FAULT_WRITE; goto out_unlock; } get_page(page); spin_unlock(&mm->page_table_lock); if (transparent_hugepage_enabled(vma) && !transparent_hugepage_debug_cow()) new_page = alloc_hugepage(transparent_hugepage_defrag(vma)); else new_page = NULL; if (unlikely(!new_page)) { ret = do_huge_pmd_wp_page_fallback(mm, vma, address, pmd, orig_pmd, page, haddr); put_page(page); goto out; } copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); __SetPageUptodate(new_page); spin_lock(&mm->page_table_lock); put_page(page); if (unlikely(!pmd_same(*pmd, orig_pmd))) put_page(new_page); else { pmd_t entry; VM_BUG_ON(!PageHead(page)); entry = mk_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); entry = pmd_mkhuge(entry); pmdp_clear_flush_notify(vma, haddr, pmd); page_add_new_anon_rmap(new_page, vma, haddr); set_pmd_at(mm, haddr, pmd, entry); update_mmu_cache(vma, address, entry); page_remove_rmap(page); put_page(page); ret |= VM_FAULT_WRITE; } out_unlock: spin_unlock(&mm->page_table_lock); out: return ret; } struct page *follow_trans_huge_pmd(struct mm_struct *mm, unsigned long addr, pmd_t *pmd, unsigned int flags) { struct page *page = NULL; assert_spin_locked(&mm->page_table_lock); if (flags & FOLL_WRITE && !pmd_write(*pmd)) goto out; page = pmd_page(*pmd); VM_BUG_ON(!PageHead(page)); if (flags & FOLL_TOUCH) { pmd_t _pmd; /* * We should set the dirty bit only for FOLL_WRITE but * for now the dirty bit in the pmd is meaningless. * And if the dirty bit will become meaningful and * we'll only set it with FOLL_WRITE, an atomic * set_bit will be required on the pmd to set the * young bit, instead of the current set_pmd_at. */ _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); } page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; VM_BUG_ON(!PageCompound(page)); if (flags & FOLL_GET) get_page(page); out: return page; } int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd) { int ret = 0; spin_lock(&tlb->mm->page_table_lock); if (likely(pmd_trans_huge(*pmd))) { if (unlikely(pmd_trans_splitting(*pmd))) { spin_unlock(&tlb->mm->page_table_lock); wait_split_huge_page(vma->anon_vma, pmd); } else { struct page *page; pgtable_t pgtable; pgtable = get_pmd_huge_pte(tlb->mm); page = pmd_page(*pmd); pmd_clear(pmd); page_remove_rmap(page); VM_BUG_ON(page_mapcount(page) < 0); add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); VM_BUG_ON(!PageHead(page)); spin_unlock(&tlb->mm->page_table_lock); tlb_remove_page(tlb, page); pte_free(tlb->mm, pgtable); ret = 1; } } else spin_unlock(&tlb->mm->page_table_lock); return ret; } pmd_t *page_check_address_pmd(struct page *page, struct mm_struct *mm, unsigned long address, enum page_check_address_pmd_flag flag) { pgd_t *pgd; pud_t *pud; pmd_t *pmd, *ret = NULL; if (address & ~HPAGE_PMD_MASK) goto out; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; pud = pud_offset(pgd, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) goto out; if (pmd_page(*pmd) != page) goto out; VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && pmd_trans_splitting(*pmd)); if (pmd_trans_huge(*pmd)) { VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && !pmd_trans_splitting(*pmd)); ret = pmd; } out: return ret; } static int __split_huge_page_splitting(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct mm_struct *mm = vma->vm_mm; pmd_t *pmd; int ret = 0; spin_lock(&mm->page_table_lock); pmd = page_check_address_pmd(page, mm, address, PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); if (pmd) { /* * We can't temporarily set the pmd to null in order * to split it, the pmd must remain marked huge at all * times or the VM won't take the pmd_trans_huge paths * and it won't wait on the anon_vma->root->lock to * serialize against split_huge_page*. */ pmdp_splitting_flush_notify(vma, address, pmd); ret = 1; } spin_unlock(&mm->page_table_lock); return ret; } static void __split_huge_page_refcount(struct page *page) { int i; unsigned long head_index = page->index; struct zone *zone = page_zone(page); /* prevent PageLRU to go away from under us, and freeze lru stats */ spin_lock_irq(&zone->lru_lock); compound_lock(page); for (i = 1; i < HPAGE_PMD_NR; i++) { struct page *page_tail = page + i; /* tail_page->_count cannot change */ atomic_sub(atomic_read(&page_tail->_count), &page->_count); BUG_ON(page_count(page) <= 0); atomic_add(page_mapcount(page) + 1, &page_tail->_count); BUG_ON(atomic_read(&page_tail->_count) <= 0); /* after clearing PageTail the gup refcount can be released */ smp_mb(); page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; page_tail->flags |= (page->flags & ((1L << PG_referenced) | (1L << PG_swapbacked) | (1L << PG_mlocked) | (1L << PG_uptodate))); page_tail->flags |= (1L << PG_dirty); /* * 1) clear PageTail before overwriting first_page * 2) clear PageTail before clearing PageHead for VM_BUG_ON */ smp_wmb(); /* * __split_huge_page_splitting() already set the * splitting bit in all pmd that could map this * hugepage, that will ensure no CPU can alter the * mapcount on the head page. The mapcount is only * accounted in the head page and it has to be * transferred to all tail pages in the below code. So * for this code to be safe, the split the mapcount * can't change. But that doesn't mean userland can't * keep changing and reading the page contents while * we transfer the mapcount, so the pmd splitting * status is achieved setting a reserved bit in the * pmd, not by clearing the present bit. */ BUG_ON(page_mapcount(page_tail)); page_tail->_mapcount = page->_mapcount; BUG_ON(page_tail->mapping); page_tail->mapping = page->mapping; page_tail->index = ++head_index; BUG_ON(!PageAnon(page_tail)); BUG_ON(!PageUptodate(page_tail)); BUG_ON(!PageDirty(page_tail)); BUG_ON(!PageSwapBacked(page_tail)); lru_add_page_tail(zone, page, page_tail); } ClearPageCompound(page); compound_unlock(page); spin_unlock_irq(&zone->lru_lock); for (i = 1; i < HPAGE_PMD_NR; i++) { struct page *page_tail = page + i; BUG_ON(page_count(page_tail) <= 0); /* * Tail pages may be freed if there wasn't any mapping * like if add_to_swap() is running on a lru page that * had its mapping zapped. And freeing these pages * requires taking the lru_lock so we do the put_page * of the tail pages after the split is complete. */ put_page(page_tail); } /* * Only the head page (now become a regular page) is required * to be pinned by the caller. */ BUG_ON(page_count(page) <= 0); } static int __split_huge_page_map(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct mm_struct *mm = vma->vm_mm; pmd_t *pmd, _pmd; int ret = 0, i; pgtable_t pgtable; unsigned long haddr; spin_lock(&mm->page_table_lock); pmd = page_check_address_pmd(page, mm, address, PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); if (pmd) { pgtable = get_pmd_huge_pte(mm); pmd_populate(mm, &_pmd, pgtable); for (i = 0, haddr = address; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { pte_t *pte, entry; BUG_ON(PageCompound(page+i)); entry = mk_pte(page + i, vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (!pmd_write(*pmd)) entry = pte_wrprotect(entry); else BUG_ON(page_mapcount(page) != 1); if (!pmd_young(*pmd)) entry = pte_mkold(entry); pte = pte_offset_map(&_pmd, haddr); BUG_ON(!pte_none(*pte)); set_pte_at(mm, haddr, pte, entry); pte_unmap(pte); } mm->nr_ptes++; smp_wmb(); /* make pte visible before pmd */ /* * Up to this point the pmd is present and huge and * userland has the whole access to the hugepage * during the split (which happens in place). If we * overwrite the pmd with the not-huge version * pointing to the pte here (which of course we could * if all CPUs were bug free), userland could trigger * a small page size TLB miss on the small sized TLB * while the hugepage TLB entry is still established * in the huge TLB. Some CPU doesn't like that. See * http://support.amd.com/us/Processor_TechDocs/41322.pdf, * Erratum 383 on page 93. Intel should be safe but is * also warns that it's only safe if the permission * and cache attributes of the two entries loaded in * the two TLB is identical (which should be the case * here). But it is generally safer to never allow * small and huge TLB entries for the same virtual * address to be loaded simultaneously. So instead of * doing "pmd_populate(); flush_tlb_range();" we first * mark the current pmd notpresent (atomically because * here the pmd_trans_huge and pmd_trans_splitting * must remain set at all times on the pmd until the * split is complete for this pmd), then we flush the * SMP TLB and finally we write the non-huge version * of the pmd entry with pmd_populate. */ set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); pmd_populate(mm, pmd, pgtable); ret = 1; } spin_unlock(&mm->page_table_lock); return ret; } /* must be called with anon_vma->root->lock hold */ static void __split_huge_page(struct page *page, struct anon_vma *anon_vma) { int mapcount, mapcount2; struct anon_vma_chain *avc; BUG_ON(!PageHead(page)); BUG_ON(PageTail(page)); mapcount = 0; list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { struct vm_area_struct *vma = avc->vma; unsigned long addr = vma_address(page, vma); BUG_ON(is_vma_temporary_stack(vma)); if (addr == -EFAULT) continue; mapcount += __split_huge_page_splitting(page, vma, addr); } /* * It is critical that new vmas are added to the tail of the * anon_vma list. This guarantes that if copy_huge_pmd() runs * and establishes a child pmd before * __split_huge_page_splitting() freezes the parent pmd (so if * we fail to prevent copy_huge_pmd() from running until the * whole __split_huge_page() is complete), we will still see * the newly established pmd of the child later during the * walk, to be able to set it as pmd_trans_splitting too. */ if (mapcount != page_mapcount(page)) printk(KERN_ERR "mapcount %d page_mapcount %d\n", mapcount, page_mapcount(page)); BUG_ON(mapcount != page_mapcount(page)); __split_huge_page_refcount(page); mapcount2 = 0; list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { struct vm_area_struct *vma = avc->vma; unsigned long addr = vma_address(page, vma); BUG_ON(is_vma_temporary_stack(vma)); if (addr == -EFAULT) continue; mapcount2 += __split_huge_page_map(page, vma, addr); } if (mapcount != mapcount2) printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", mapcount, mapcount2, page_mapcount(page)); BUG_ON(mapcount != mapcount2); } int split_huge_page(struct page *page) { struct anon_vma *anon_vma; int ret = 1; BUG_ON(!PageAnon(page)); anon_vma = page_lock_anon_vma(page); if (!anon_vma) goto out; ret = 0; if (!PageCompound(page)) goto out_unlock; BUG_ON(!PageSwapBacked(page)); __split_huge_page(page, anon_vma); BUG_ON(PageCompound(page)); out_unlock: page_unlock_anon_vma(anon_vma); out: return ret; } int hugepage_madvise(unsigned long *vm_flags) { /* * Be somewhat over-protective like KSM for now! */ if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE | VM_PFNMAP | VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | VM_MIXEDMAP | VM_SAO)) return -EINVAL; *vm_flags |= VM_HUGEPAGE; return 0; } void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) { struct page *page; spin_lock(&mm->page_table_lock); if (unlikely(!pmd_trans_huge(*pmd))) { spin_unlock(&mm->page_table_lock); return; } page = pmd_page(*pmd); VM_BUG_ON(!page_count(page)); get_page(page); spin_unlock(&mm->page_table_lock); split_huge_page(page); put_page(page); BUG_ON(pmd_trans_huge(*pmd)); }