mirror of
https://github.com/Fishwaldo/linux-bl808.git
synced 2025-06-17 20:25:19 +00:00
When converting an xdp_frame into an SKB, and sending this into the network stack, then the underlying XDP memory model need to release associated resources, because the network stack don't have callbacks for XDP memory models. The only memory model that needs this is page_pool, when a driver use the DMA-mapping feature. Introduce page_pool_release_page(), which basically does the same as page_pool_unmap_page(). Add xdp_release_frame() as the XDP memory model interface for calling it, if the memory model match MEM_TYPE_PAGE_POOL, to save the function call overhead for others. Have cpumap call xdp_release_frame() before xdp_scrub_frame(). Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
163 lines
5 KiB
C
163 lines
5 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* page_pool.h
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
*/
|
|
|
|
/**
|
|
* DOC: page_pool allocator
|
|
*
|
|
* This page_pool allocator is optimized for the XDP mode that
|
|
* uses one-frame-per-page, but have fallbacks that act like the
|
|
* regular page allocator APIs.
|
|
*
|
|
* Basic use involve replacing alloc_pages() calls with the
|
|
* page_pool_alloc_pages() call. Drivers should likely use
|
|
* page_pool_dev_alloc_pages() replacing dev_alloc_pages().
|
|
*
|
|
* If page_pool handles DMA mapping (use page->private), then API user
|
|
* is responsible for invoking page_pool_put_page() once. In-case of
|
|
* elevated refcnt, the DMA state is released, assuming other users of
|
|
* the page will eventually call put_page().
|
|
*
|
|
* If no DMA mapping is done, then it can act as shim-layer that
|
|
* fall-through to alloc_page. As no state is kept on the page, the
|
|
* regular put_page() call is sufficient.
|
|
*/
|
|
#ifndef _NET_PAGE_POOL_H
|
|
#define _NET_PAGE_POOL_H
|
|
|
|
#include <linux/mm.h> /* Needed by ptr_ring */
|
|
#include <linux/ptr_ring.h>
|
|
#include <linux/dma-direction.h>
|
|
|
|
#define PP_FLAG_DMA_MAP 1 /* Should page_pool do the DMA map/unmap */
|
|
#define PP_FLAG_ALL PP_FLAG_DMA_MAP
|
|
|
|
/*
|
|
* Fast allocation side cache array/stack
|
|
*
|
|
* The cache size and refill watermark is related to the network
|
|
* use-case. The NAPI budget is 64 packets. After a NAPI poll the RX
|
|
* ring is usually refilled and the max consumed elements will be 64,
|
|
* thus a natural max size of objects needed in the cache.
|
|
*
|
|
* Keeping room for more objects, is due to XDP_DROP use-case. As
|
|
* XDP_DROP allows the opportunity to recycle objects directly into
|
|
* this array, as it shares the same softirq/NAPI protection. If
|
|
* cache is already full (or partly full) then the XDP_DROP recycles
|
|
* would have to take a slower code path.
|
|
*/
|
|
#define PP_ALLOC_CACHE_SIZE 128
|
|
#define PP_ALLOC_CACHE_REFILL 64
|
|
struct pp_alloc_cache {
|
|
u32 count;
|
|
void *cache[PP_ALLOC_CACHE_SIZE];
|
|
};
|
|
|
|
struct page_pool_params {
|
|
unsigned int flags;
|
|
unsigned int order;
|
|
unsigned int pool_size;
|
|
int nid; /* Numa node id to allocate from pages from */
|
|
struct device *dev; /* device, for DMA pre-mapping purposes */
|
|
enum dma_data_direction dma_dir; /* DMA mapping direction */
|
|
};
|
|
|
|
struct page_pool {
|
|
struct rcu_head rcu;
|
|
struct page_pool_params p;
|
|
|
|
/*
|
|
* Data structure for allocation side
|
|
*
|
|
* Drivers allocation side usually already perform some kind
|
|
* of resource protection. Piggyback on this protection, and
|
|
* require driver to protect allocation side.
|
|
*
|
|
* For NIC drivers this means, allocate a page_pool per
|
|
* RX-queue. As the RX-queue is already protected by
|
|
* Softirq/BH scheduling and napi_schedule. NAPI schedule
|
|
* guarantee that a single napi_struct will only be scheduled
|
|
* on a single CPU (see napi_schedule).
|
|
*/
|
|
struct pp_alloc_cache alloc ____cacheline_aligned_in_smp;
|
|
|
|
/* Data structure for storing recycled pages.
|
|
*
|
|
* Returning/freeing pages is more complicated synchronization
|
|
* wise, because free's can happen on remote CPUs, with no
|
|
* association with allocation resource.
|
|
*
|
|
* Use ptr_ring, as it separates consumer and producer
|
|
* effeciently, it a way that doesn't bounce cache-lines.
|
|
*
|
|
* TODO: Implement bulk return pages into this structure.
|
|
*/
|
|
struct ptr_ring ring;
|
|
};
|
|
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp);
|
|
|
|
static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
|
|
{
|
|
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
|
|
|
|
return page_pool_alloc_pages(pool, gfp);
|
|
}
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params);
|
|
|
|
void page_pool_destroy(struct page_pool *pool);
|
|
|
|
/* Never call this directly, use helpers below */
|
|
void __page_pool_put_page(struct page_pool *pool,
|
|
struct page *page, bool allow_direct);
|
|
|
|
static inline void page_pool_put_page(struct page_pool *pool,
|
|
struct page *page, bool allow_direct)
|
|
{
|
|
/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
|
|
* allow registering MEM_TYPE_PAGE_POOL, but shield linker.
|
|
*/
|
|
#ifdef CONFIG_PAGE_POOL
|
|
__page_pool_put_page(pool, page, allow_direct);
|
|
#endif
|
|
}
|
|
/* Very limited use-cases allow recycle direct */
|
|
static inline void page_pool_recycle_direct(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
__page_pool_put_page(pool, page, true);
|
|
}
|
|
|
|
/* Disconnects a page (from a page_pool). API users can have a need
|
|
* to disconnect a page (from a page_pool), to allow it to be used as
|
|
* a regular page (that will eventually be returned to the normal
|
|
* page-allocator via put_page).
|
|
*/
|
|
void page_pool_unmap_page(struct page_pool *pool, struct page *page);
|
|
static inline void page_pool_release_page(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
#ifdef CONFIG_PAGE_POOL
|
|
page_pool_unmap_page(pool, page);
|
|
#endif
|
|
}
|
|
|
|
static inline dma_addr_t page_pool_get_dma_addr(struct page *page)
|
|
{
|
|
return page->dma_addr;
|
|
}
|
|
|
|
static inline bool is_page_pool_compiled_in(void)
|
|
{
|
|
#ifdef CONFIG_PAGE_POOL
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#endif /* _NET_PAGE_POOL_H */
|