- pci_mvebu: Fix access to config space and PCIe Root Port (Pali)
- a37xx: pci: Program the data strobe for config read requests (Pali)
- kwboot: Misc improvements and fixes (Pali)
This commit is contained in:
Tom Rini 2021-11-03 09:42:22 -04:00
commit 0bf6563a3e
3 changed files with 451 additions and 234 deletions

View file

@ -472,6 +472,9 @@ static int pcie_advk_read_config(const struct udevice *bus, pci_dev_t bdf,
advk_writel(pcie, reg, PIO_ADDR_LS); advk_writel(pcie, reg, PIO_ADDR_LS);
advk_writel(pcie, 0, PIO_ADDR_MS); advk_writel(pcie, 0, PIO_ADDR_MS);
/* Program the data strobe */
advk_writel(pcie, 0xf, PIO_WR_DATA_STRB);
retry_count = 0; retry_count = 0;
retry: retry:

View file

@ -36,6 +36,7 @@ DECLARE_GLOBAL_DATA_PTR;
#define PCIE_DEV_REV_OFF 0x0008 #define PCIE_DEV_REV_OFF 0x0008
#define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3)) #define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3))
#define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3)) #define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3))
#define PCIE_EXP_ROM_BAR_OFF 0x0030
#define PCIE_CAPAB_OFF 0x0060 #define PCIE_CAPAB_OFF 0x0060
#define PCIE_CTRL_STAT_OFF 0x0068 #define PCIE_CTRL_STAT_OFF 0x0068
#define PCIE_HEADER_LOG_4_OFF 0x0128 #define PCIE_HEADER_LOG_4_OFF 0x0128
@ -52,15 +53,16 @@ DECLARE_GLOBAL_DATA_PTR;
#define PCIE_CONF_BUS(b) (((b) & 0xff) << 16) #define PCIE_CONF_BUS(b) (((b) & 0xff) << 16)
#define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11) #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11)
#define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8) #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8)
#define PCIE_CONF_ADDR(dev, reg) \ #define PCIE_CONF_ADDR(b, d, f, reg) \
(PCIE_CONF_BUS(PCI_BUS(dev)) | PCIE_CONF_DEV(PCI_DEV(dev)) | \ (PCIE_CONF_BUS(b) | PCIE_CONF_DEV(d) | \
PCIE_CONF_FUNC(PCI_FUNC(dev)) | PCIE_CONF_REG(reg) | \ PCIE_CONF_FUNC(f) | PCIE_CONF_REG(reg) | \
PCIE_CONF_ADDR_EN) PCIE_CONF_ADDR_EN)
#define PCIE_CONF_DATA_OFF 0x18fc #define PCIE_CONF_DATA_OFF 0x18fc
#define PCIE_MASK_OFF 0x1910 #define PCIE_MASK_OFF 0x1910
#define PCIE_MASK_ENABLE_INTS (0xf << 24) #define PCIE_MASK_ENABLE_INTS (0xf << 24)
#define PCIE_CTRL_OFF 0x1a00 #define PCIE_CTRL_OFF 0x1a00
#define PCIE_CTRL_X1_MODE BIT(0) #define PCIE_CTRL_X1_MODE BIT(0)
#define PCIE_CTRL_RC_MODE BIT(1)
#define PCIE_STAT_OFF 0x1a04 #define PCIE_STAT_OFF 0x1a04
#define PCIE_STAT_BUS (0xff << 8) #define PCIE_STAT_BUS (0xff << 8)
#define PCIE_STAT_DEV (0x1f << 16) #define PCIE_STAT_DEV (0x1f << 16)
@ -80,12 +82,13 @@ struct mvebu_pcie {
int devfn; int devfn;
u32 lane_mask; u32 lane_mask;
int first_busno; int first_busno;
int local_dev; int sec_busno;
char name[16]; char name[16];
unsigned int mem_target; unsigned int mem_target;
unsigned int mem_attr; unsigned int mem_attr;
unsigned int io_target; unsigned int io_target;
unsigned int io_attr; unsigned int io_attr;
u32 cfgcache[0x34 - 0x10];
}; };
/* /*
@ -124,44 +127,27 @@ static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie *pcie, int devno)
writel(stat, pcie->base + PCIE_STAT_OFF); writel(stat, pcie->base + PCIE_STAT_OFF);
} }
static int mvebu_pcie_get_local_bus_nr(struct mvebu_pcie *pcie)
{
u32 stat;
stat = readl(pcie->base + PCIE_STAT_OFF);
return (stat & PCIE_STAT_BUS) >> 8;
}
static int mvebu_pcie_get_local_dev_nr(struct mvebu_pcie *pcie)
{
u32 stat;
stat = readl(pcie->base + PCIE_STAT_OFF);
return (stat & PCIE_STAT_DEV) >> 16;
}
static inline struct mvebu_pcie *hose_to_pcie(struct pci_controller *hose) static inline struct mvebu_pcie *hose_to_pcie(struct pci_controller *hose)
{ {
return container_of(hose, struct mvebu_pcie, hose); return container_of(hose, struct mvebu_pcie, hose);
} }
static int mvebu_pcie_valid_addr(struct mvebu_pcie *pcie, pci_dev_t bdf) static bool mvebu_pcie_valid_addr(struct mvebu_pcie *pcie,
int busno, int dev, int func)
{ {
/* /* On primary bus is only one PCI Bridge */
* There are two devices visible on local bus: if (busno == pcie->first_busno && (dev != 0 || func != 0))
* * on slot configured by function mvebu_pcie_set_local_dev_nr() return false;
* (by default this register is set to 0) there is a
* "Marvell Memory controller", which isn't useful in root complex
* mode,
* * on all other slots the real PCIe card connected to the PCIe slot.
*
* We therefore allow access only to the real PCIe card.
*/
if (PCI_BUS(bdf) == pcie->first_busno &&
PCI_DEV(bdf) != !pcie->local_dev)
return 0;
return 1; /* Access to other buses is possible when link is up */
if (busno != pcie->first_busno && !mvebu_pcie_link_up(pcie))
return false;
/* On secondary bus can be only one PCIe device */
if (busno == pcie->sec_busno && dev != 0)
return false;
return true;
} }
static int mvebu_pcie_read_config(const struct udevice *bus, pci_dev_t bdf, static int mvebu_pcie_read_config(const struct udevice *bus, pci_dev_t bdf,
@ -169,24 +155,77 @@ static int mvebu_pcie_read_config(const struct udevice *bus, pci_dev_t bdf,
enum pci_size_t size) enum pci_size_t size)
{ {
struct mvebu_pcie *pcie = dev_get_plat(bus); struct mvebu_pcie *pcie = dev_get_plat(bus);
u32 data; int busno = PCI_BUS(bdf) - dev_seq(bus);
u32 addr, data;
debug("PCIE CFG read: (b,d,f)=(%2d,%2d,%2d) ", debug("PCIE CFG read: (b,d,f)=(%2d,%2d,%2d) ",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf)); PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
if (!mvebu_pcie_valid_addr(pcie, bdf)) { if (!mvebu_pcie_valid_addr(pcie, busno, PCI_DEV(bdf), PCI_FUNC(bdf))) {
debug("- out of range\n"); debug("- out of range\n");
*valuep = pci_get_ff(size); *valuep = pci_get_ff(size);
return 0; return 0;
} }
/*
* mvebu has different internal registers mapped into PCI config space
* in range 0x10-0x34 for PCI bridge, so do not access PCI config space
* for this range and instead read content from driver virtual cfgcache
*/
if (busno == pcie->first_busno && offset >= 0x10 && offset < 0x34) {
data = pcie->cfgcache[(offset - 0x10) / 4];
debug("(addr,size,val)=(0x%04x, %d, 0x%08x) from cfgcache\n",
offset, size, data);
*valuep = pci_conv_32_to_size(data, offset, size);
return 0;
} else if (busno == pcie->first_busno &&
(offset & ~3) == PCI_ROM_ADDRESS1) {
/* mvebu has Expansion ROM Base Address (0x38) at offset 0x30 */
offset -= PCI_ROM_ADDRESS1 - PCIE_EXP_ROM_BAR_OFF;
}
/*
* PCI bridge is device 0 at primary bus but mvebu has it mapped on
* secondary bus with device number 1.
*/
if (busno == pcie->first_busno)
addr = PCIE_CONF_ADDR(pcie->sec_busno, 1, 0, offset);
else
addr = PCIE_CONF_ADDR(busno, PCI_DEV(bdf), PCI_FUNC(bdf), offset);
/* write address */ /* write address */
writel(PCIE_CONF_ADDR(bdf, offset), pcie->base + PCIE_CONF_ADDR_OFF); writel(addr, pcie->base + PCIE_CONF_ADDR_OFF);
/* read data */ /* read data */
data = readl(pcie->base + PCIE_CONF_DATA_OFF); switch (size) {
case PCI_SIZE_8:
data = readb(pcie->base + PCIE_CONF_DATA_OFF + (offset & 3));
break;
case PCI_SIZE_16:
data = readw(pcie->base + PCIE_CONF_DATA_OFF + (offset & 2));
break;
case PCI_SIZE_32:
data = readl(pcie->base + PCIE_CONF_DATA_OFF);
break;
default:
return -EINVAL;
}
if (busno == pcie->first_busno &&
(offset & ~3) == (PCI_HEADER_TYPE & ~3)) {
/*
* Change Header Type of PCI Bridge device to Type 1
* (0x01, used by PCI Bridges) because mvebu reports
* Type 0 (0x00, used by Upstream and Endpoint devices).
*/
data = pci_conv_size_to_32(data, 0, offset, size);
data &= ~0x007f0000;
data |= PCI_HEADER_TYPE_BRIDGE << 16;
data = pci_conv_32_to_size(data, offset, size);
}
debug("(addr,size,val)=(0x%04x, %d, 0x%08x)\n", offset, size, data); debug("(addr,size,val)=(0x%04x, %d, 0x%08x)\n", offset, size, data);
*valuep = pci_conv_32_to_size(data, offset, size); *valuep = data;
return 0; return 0;
} }
@ -196,23 +235,79 @@ static int mvebu_pcie_write_config(struct udevice *bus, pci_dev_t bdf,
enum pci_size_t size) enum pci_size_t size)
{ {
struct mvebu_pcie *pcie = dev_get_plat(bus); struct mvebu_pcie *pcie = dev_get_plat(bus);
u32 data; int busno = PCI_BUS(bdf) - dev_seq(bus);
u32 addr, data;
debug("PCIE CFG write: (b,d,f)=(%2d,%2d,%2d) ", debug("PCIE CFG write: (b,d,f)=(%2d,%2d,%2d) ",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf)); PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
debug("(addr,size,val)=(0x%04x, %d, 0x%08lx)\n", offset, size, value); debug("(addr,size,val)=(0x%04x, %d, 0x%08lx)\n", offset, size, value);
if (!mvebu_pcie_valid_addr(pcie, bdf)) { if (!mvebu_pcie_valid_addr(pcie, busno, PCI_DEV(bdf), PCI_FUNC(bdf))) {
debug("- out of range\n"); debug("- out of range\n");
return 0; return 0;
} }
/*
* mvebu has different internal registers mapped into PCI config space
* in range 0x10-0x34 for PCI bridge, so do not access PCI config space
* for this range and instead write content to driver virtual cfgcache
*/
if (busno == pcie->first_busno && offset >= 0x10 && offset < 0x34) {
debug("Writing to cfgcache only\n");
data = pcie->cfgcache[(offset - 0x10) / 4];
data = pci_conv_size_to_32(data, value, offset, size);
/* mvebu PCI bridge does not have configurable bars */
if ((offset & ~3) == PCI_BASE_ADDRESS_0 ||
(offset & ~3) == PCI_BASE_ADDRESS_1)
data = 0x0;
pcie->cfgcache[(offset - 0x10) / 4] = data;
/* mvebu has its own way how to set PCI primary bus number */
if (offset == PCI_PRIMARY_BUS) {
pcie->first_busno = data & 0xff;
debug("Primary bus number was changed to %d\n",
pcie->first_busno);
}
/* mvebu has its own way how to set PCI secondary bus number */
if (offset == PCI_SECONDARY_BUS ||
(offset == PCI_PRIMARY_BUS && size != PCI_SIZE_8)) {
pcie->sec_busno = (data >> 8) & 0xff;
mvebu_pcie_set_local_bus_nr(pcie, pcie->sec_busno);
debug("Secondary bus number was changed to %d\n",
pcie->sec_busno);
}
return 0;
} else if (busno == pcie->first_busno &&
(offset & ~3) == PCI_ROM_ADDRESS1) {
/* mvebu has Expansion ROM Base Address (0x38) at offset 0x30 */
offset -= PCI_ROM_ADDRESS1 - PCIE_EXP_ROM_BAR_OFF;
}
/*
* PCI bridge is device 0 at primary bus but mvebu has it mapped on
* secondary bus with device number 1.
*/
if (busno == pcie->first_busno)
addr = PCIE_CONF_ADDR(pcie->sec_busno, 1, 0, offset);
else
addr = PCIE_CONF_ADDR(busno, PCI_DEV(bdf), PCI_FUNC(bdf), offset);
/* write address */ /* write address */
writel(PCIE_CONF_ADDR(bdf, offset), pcie->base + PCIE_CONF_ADDR_OFF); writel(addr, pcie->base + PCIE_CONF_ADDR_OFF);
/* write data */ /* write data */
data = pci_conv_size_to_32(0, value, offset, size); switch (size) {
writel(data, pcie->base + PCIE_CONF_DATA_OFF); case PCI_SIZE_8:
writeb(value, pcie->base + PCIE_CONF_DATA_OFF + (offset & 3));
break;
case PCI_SIZE_16:
writew(value, pcie->base + PCIE_CONF_DATA_OFF + (offset & 2));
break;
case PCI_SIZE_32:
writel(value, pcie->base + PCIE_CONF_DATA_OFF);
break;
default:
return -EINVAL;
}
return 0; return 0;
} }
@ -277,22 +372,65 @@ static int mvebu_pcie_probe(struct udevice *dev)
struct mvebu_pcie *pcie = dev_get_plat(dev); struct mvebu_pcie *pcie = dev_get_plat(dev);
struct udevice *ctlr = pci_get_controller(dev); struct udevice *ctlr = pci_get_controller(dev);
struct pci_controller *hose = dev_get_uclass_priv(ctlr); struct pci_controller *hose = dev_get_uclass_priv(ctlr);
int bus = dev_seq(dev);
u32 reg; u32 reg;
debug("%s: PCIe %d.%d - up, base %08x\n", __func__, /* Setup PCIe controller to Root Complex mode */
pcie->port, pcie->lane, (u32)pcie->base); reg = readl(pcie->base + PCIE_CTRL_OFF);
reg |= PCIE_CTRL_RC_MODE;
writel(reg, pcie->base + PCIE_CTRL_OFF);
/* Read Id info and local bus/dev */ /*
debug("direct conf read %08x, local bus %d, local dev %d\n", * Change Class Code of PCI Bridge device to PCI Bridge (0x600400)
readl(pcie->base), mvebu_pcie_get_local_bus_nr(pcie), * because default value is Memory controller (0x508000) which
mvebu_pcie_get_local_dev_nr(pcie)); * U-Boot cannot recognize as P2P Bridge.
*
* Note that this mvebu PCI Bridge does not have compliant Type 1
* Configuration Space. Header Type is reported as Type 0 and in
* range 0x10-0x34 it has aliased internal mvebu registers 0x10-0x34
* (e.g. PCIE_BAR_LO_OFF) and register 0x38 is reserved.
*
* Driver for this range redirects access to virtual cfgcache[] buffer
* which avoids changing internal mvebu registers. And changes Header
* Type response value to Type 1.
*/
reg = readl(pcie->base + PCIE_DEV_REV_OFF);
reg &= ~0xffffff00;
reg |= (PCI_CLASS_BRIDGE_PCI << 8) << 8;
writel(reg, pcie->base + PCIE_DEV_REV_OFF);
pcie->first_busno = bus; /*
pcie->local_dev = 1; * mvebu uses local bus number and local device number to determinate
* type of config request. Type 0 is used if target bus number equals
mvebu_pcie_set_local_bus_nr(pcie, bus); * local bus number and target device number differs from local device
mvebu_pcie_set_local_dev_nr(pcie, pcie->local_dev); * number. Type 1 is used if target bus number differs from local bus
* number. And when target bus number equals local bus number and
* target device equals local device number then request is routed to
* PCI Bridge which represent local PCIe Root Port.
*
* It means that PCI primary and secondary buses shares one bus number
* which is configured via local bus number. Determination if config
* request should go to primary or secondary bus is done based on local
* device number.
*
* PCIe is point-to-point bus, so at secondary bus is always exactly one
* device with number 0. So set local device number to 1, it would not
* conflict with any device on secondary bus number and will ensure that
* accessing secondary bus and all buses behind secondary would work
* automatically and correctly. Therefore this configuration of local
* device number implies that setting of local bus number configures
* secondary bus number. Set it to 0 as U-Boot CONFIG_PCI_PNP code will
* later configure it via config write requests to the correct value.
* mvebu_pcie_write_config() catches config write requests which tries
* to change primary/secondary bus number and correctly updates local
* bus number based on new secondary bus number.
*
* With this configuration is PCI Bridge available at secondary bus as
* device number 1. But it must be available at primary bus as device
* number 0. So in mvebu_pcie_read_config() and mvebu_pcie_write_config()
* functions rewrite address to the real one when accessing primary bus.
*/
mvebu_pcie_set_local_bus_nr(pcie, 0);
mvebu_pcie_set_local_dev_nr(pcie, 1);
pcie->mem.start = (u32)mvebu_pcie_membase; pcie->mem.start = (u32)mvebu_pcie_membase;
pcie->mem.end = pcie->mem.start + PCIE_MEM_SIZE - 1; pcie->mem.end = pcie->mem.start + PCIE_MEM_SIZE - 1;
@ -319,14 +457,6 @@ static int mvebu_pcie_probe(struct udevice *dev)
/* Setup windows and configure host bridge */ /* Setup windows and configure host bridge */
mvebu_pcie_setup_wins(pcie); mvebu_pcie_setup_wins(pcie);
/* Master + slave enable. */
reg = readl(pcie->base + PCIE_CMD_OFF);
reg |= PCI_COMMAND_MEMORY;
reg |= PCI_COMMAND_IO;
reg |= PCI_COMMAND_MASTER;
reg |= BIT(10); /* disable interrupts */
writel(reg, pcie->base + PCIE_CMD_OFF);
/* PCI memory space */ /* PCI memory space */
pci_set_region(hose->regions + 0, pcie->mem.start, pci_set_region(hose->regions + 0, pcie->mem.start,
pcie->mem.start, PCIE_MEM_SIZE, PCI_REGION_MEM); pcie->mem.start, PCIE_MEM_SIZE, PCI_REGION_MEM);
@ -342,6 +472,12 @@ static int mvebu_pcie_probe(struct udevice *dev)
writel(SOC_REGS_PHY_BASE, pcie->base + PCIE_BAR_LO_OFF(0)); writel(SOC_REGS_PHY_BASE, pcie->base + PCIE_BAR_LO_OFF(0));
writel(0, pcie->base + PCIE_BAR_HI_OFF(0)); writel(0, pcie->base + PCIE_BAR_HI_OFF(0));
/* PCI Bridge support 32-bit I/O and 64-bit prefetch mem addressing */
pcie->cfgcache[(PCI_IO_BASE - 0x10) / 4] =
PCI_IO_RANGE_TYPE_32 | (PCI_IO_RANGE_TYPE_32 << 8);
pcie->cfgcache[(PCI_PREF_MEMORY_BASE - 0x10) / 4] =
PCI_PREF_RANGE_TYPE_64 | (PCI_PREF_RANGE_TYPE_64 << 16);
return 0; return 0;
} }
@ -466,13 +602,6 @@ static int mvebu_pcie_of_to_plat(struct udevice *dev)
if (ret < 0) if (ret < 0)
goto err; goto err;
/* Check link and skip ports that have no link */
if (!mvebu_pcie_link_up(pcie)) {
debug("%s: %s - down\n", __func__, pcie->name);
ret = -ENODEV;
goto err;
}
return 0; return 0;
err: err:
@ -504,7 +633,7 @@ static int mvebu_pcie_bind(struct udevice *parent)
struct udevice *dev; struct udevice *dev;
ofnode subnode; ofnode subnode;
/* Lookup eth driver */ /* Lookup pci driver */
drv = lists_uclass_lookup(UCLASS_PCI); drv = lists_uclass_lookup(UCLASS_PCI);
if (!drv) { if (!drv) {
puts("Cannot find PCI driver\n"); puts("Cannot find PCI driver\n");

View file

@ -78,33 +78,18 @@ struct kwboot_block {
#define KWBOOT_BLK_RSP_TIMEO 1000 /* ms */ #define KWBOOT_BLK_RSP_TIMEO 1000 /* ms */
#define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */ #define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */
/* ARM code making baudrate changing function return to original exec address */ /* ARM code to change baudrate */
static unsigned char kwboot_pre_baud_code[] = {
/* exec_addr: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
0x0c, 0xe0, 0x1f, 0xe5, /* ldr lr, exec_addr */
};
/* ARM code for binary header injection to change baudrate */
static unsigned char kwboot_baud_code[] = { static unsigned char kwboot_baud_code[] = {
/* ; #define UART_BASE 0xd0012000 */ /* ; #define UART_BASE 0xd0012000 */
/* ; #define THR 0x00 */
/* ; #define DLL 0x00 */ /* ; #define DLL 0x00 */
/* ; #define DLH 0x04 */ /* ; #define DLH 0x04 */
/* ; #define LCR 0x0c */ /* ; #define LCR 0x0c */
/* ; #define DLAB 0x80 */ /* ; #define DLAB 0x80 */
/* ; #define LSR 0x14 */ /* ; #define LSR 0x14 */
/* ; #define THRE 0x20 */
/* ; #define TEMT 0x40 */ /* ; #define TEMT 0x40 */
/* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */ /* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */
/* ; */ /* ; */
/* ; u32 set_baudrate(u32 old_b, u32 new_b) { */ /* ; u32 set_baudrate(u32 old_b, u32 new_b) { */
/* ; const u8 *str = "$baudratechange"; */
/* ; u8 c; */
/* ; do { */
/* ; c = *str++; */
/* ; writel(UART_BASE + THR, c); */
/* ; } while (c); */
/* ; while */ /* ; while */
/* ; (!(readl(UART_BASE + LSR) & TEMT)); */ /* ; (!(readl(UART_BASE + LSR) & TEMT)); */
/* ; u32 lcr = readl(UART_BASE + LCR); */ /* ; u32 lcr = readl(UART_BASE + LCR); */
@ -119,38 +104,13 @@ static unsigned char kwboot_baud_code[] = {
/* ; writel(UART_BASE + DLL, new_dll); */ /* ; writel(UART_BASE + DLL, new_dll); */
/* ; writel(UART_BASE + DLH, new_dlh); */ /* ; writel(UART_BASE + DLH, new_dlh); */
/* ; writel(UART_BASE + LCR, lcr & ~DLAB); */ /* ; writel(UART_BASE + LCR, lcr & ~DLAB); */
/* ; msleep(1); */ /* ; msleep(5); */
/* ; return 0; */ /* ; return 0; */
/* ; } */ /* ; } */
0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */
/* ; r0 = UART_BASE */ /* ; r0 = UART_BASE */
0x02, 0x0a, 0xa0, 0xe3, /* mov r0, #0x2000 */ 0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x01, 0x00, 0x4d, 0xe3, /* movt r0, #0xd001 */ 0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; r2 = address of preamble string */
0xd0, 0x20, 0x8f, 0xe2, /* adr r2, preamble */
/* ; Send preamble string over UART */
/* .Lloop_preamble: */
/* */
/* ; Wait until Transmitter Holding is Empty */
/* .Lloop_thre: */
/* ; r1 = UART_BASE[LSR] & THRE */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */
/* ; Put character into Transmitter FIFO */
/* ; r1 = *r2++ */
0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */
/* ; UART_BASE[THR] = r1 */
0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */
/* ; Loop until end of preamble string */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */
/* ; Wait until Transmitter FIFO is Empty */ /* ; Wait until Transmitter FIFO is Empty */
/* .Lloop_txempty: */ /* .Lloop_txempty: */
@ -177,15 +137,15 @@ static unsigned char kwboot_baud_code[] = {
/* ; Read old baudrate value */ /* ; Read old baudrate value */
/* ; r2 = old_baudrate */ /* ; r2 = old_baudrate */
0x8c, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */ 0x74, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */
/* ; Calculate base clock */ /* ; Calculate base clock */
/* ; r1 = r2 * r1 */ /* ; r1 = r2 * r1 */
0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */ 0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */
/* ; Read new baudrate value */ /* ; Read new baudrate value */
/* ; r2 = baudrate */ /* ; r2 = new_baudrate */
0x88, 0x20, 0x9f, 0xe5, /* ldr r2, baudrate */ 0x70, 0x20, 0x9f, 0xe5, /* ldr r2, new_baudrate */
/* ; Calculate new Divisor Latch */ /* ; Calculate new Divisor Latch */
/* ; r1 = DIV_ROUND(r1, r2) = */ /* ; r1 = DIV_ROUND(r1, r2) = */
@ -225,25 +185,17 @@ static unsigned char kwboot_baud_code[] = {
0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */ 0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */ 0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
/* ; Sleep 1ms ~~ 600000 cycles at 1200 MHz */ /* ; Loop 0x2dc000 (2998272) cycles */
/* ; r1 = 600000 */ /* ; which is about 5ms on 1200 MHz CPU */
0x9f, 0x1d, 0xa0, 0xe3, /* mov r1, #0x27c0 */ /* ; r1 = 0x2dc000 */
0x09, 0x10, 0x40, 0xe3, /* movt r1, #0x0009 */ 0xb7, 0x19, 0xa0, 0xe3, /* mov r1, #0x2dc000 */
/* .Lloop_sleep: */ /* .Lloop_sleep: */
0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */ 0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */ 0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */ 0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */
/* ; Return 0 - no error */ /* ; Jump to the end of execution */
0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */ 0x01, 0x00, 0x00, 0xea, /* b end */
0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */
/* ; Preamble string */
/* preamble: */
0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */
0x64, 0x72, 0x61, 0x74,
0x65, 0x63, 0x68, 0x61,
0x6e, 0x67, 0x65, 0x00,
/* ; Placeholder for old baudrate value */ /* ; Placeholder for old baudrate value */
/* old_baudrate: */ /* old_baudrate: */
@ -252,10 +204,83 @@ static unsigned char kwboot_baud_code[] = {
/* ; Placeholder for new baudrate value */ /* ; Placeholder for new baudrate value */
/* new_baudrate: */ /* new_baudrate: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */ 0x00, 0x00, 0x00, 0x00, /* .word 0 */
/* end: */
}; };
#define KWBOOT_BAUDRATE_BIN_HEADER_SZ (sizeof(kwboot_baud_code) + \ /* ARM code from binary header executed by BootROM before changing baudrate */
sizeof(struct opt_hdr_v1) + 8 + 16) static unsigned char kwboot_baud_code_binhdr_pre[] = {
/* ; #define UART_BASE 0xd0012000 */
/* ; #define THR 0x00 */
/* ; #define LSR 0x14 */
/* ; #define THRE 0x20 */
/* ; */
/* ; void send_preamble(void) { */
/* ; const u8 *str = "$baudratechange"; */
/* ; u8 c; */
/* ; do { */
/* ; while */
/* ; ((readl(UART_BASE + LSR) & THRE)); */
/* ; c = *str++; */
/* ; writel(UART_BASE + THR, c); */
/* ; } while (c); */
/* ; } */
/* ; Preserve registers for BootROM */
0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */
/* ; r0 = UART_BASE */
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; r2 = address of preamble string */
0x00, 0x20, 0x8f, 0xe2, /* adr r2, .Lstr_preamble */
/* ; Skip preamble data section */
0x03, 0x00, 0x00, 0xea, /* b .Lloop_preamble */
/* ; Preamble string */
/* .Lstr_preamble: */
0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */
0x64, 0x72, 0x61, 0x74,
0x65, 0x63, 0x68, 0x61,
0x6e, 0x67, 0x65, 0x00,
/* ; Send preamble string over UART */
/* .Lloop_preamble: */
/* */
/* ; Wait until Transmitter Holding is Empty */
/* .Lloop_thre: */
/* ; r1 = UART_BASE[LSR] & THRE */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */
/* ; Put character into Transmitter FIFO */
/* ; r1 = *r2++ */
0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */
/* ; UART_BASE[THR] = r1 */
0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */
/* ; Loop until end of preamble string */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */
};
/* ARM code for returning from binary header back to BootROM */
static unsigned char kwboot_baud_code_binhdr_post[] = {
/* ; Return 0 - no error */
0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */
0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */
};
/* ARM code for jumping to the original image exec_addr */
static unsigned char kwboot_baud_code_data_jump[] = {
0x04, 0xf0, 0x1f, 0xe5, /* ldr pc, exec_addr */
/* ; Placeholder for exec_addr */
/* exec_addr: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
};
static const char kwb_baud_magic[16] = "$baudratechange"; static const char kwb_baud_magic[16] = "$baudratechange";
@ -404,7 +429,7 @@ out:
} }
static int static int
kwboot_tty_send(int fd, const void *buf, size_t len) kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain)
{ {
if (!buf) if (!buf)
return 0; return 0;
@ -412,13 +437,16 @@ kwboot_tty_send(int fd, const void *buf, size_t len)
if (kwboot_write(fd, buf, len) < 0) if (kwboot_write(fd, buf, len) < 0)
return -1; return -1;
if (nodrain)
return 0;
return tcdrain(fd); return tcdrain(fd);
} }
static int static int
kwboot_tty_send_char(int fd, unsigned char c) kwboot_tty_send_char(int fd, unsigned char c)
{ {
return kwboot_tty_send(fd, &c, 1); return kwboot_tty_send(fd, &c, 1, 0);
} }
static speed_t static speed_t
@ -657,6 +685,7 @@ kwboot_open_tty(const char *path, int baudrate)
cfmakeraw(&tio); cfmakeraw(&tio);
tio.c_cflag |= CREAD | CLOCAL; tio.c_cflag |= CREAD | CLOCAL;
tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS);
tio.c_cc[VMIN] = 1; tio.c_cc[VMIN] = 1;
tio.c_cc[VTIME] = 0; tio.c_cc[VTIME] = 0;
@ -704,7 +733,7 @@ kwboot_bootmsg(int tty, void *msg)
break; break;
for (count = 0; count < 128; count++) { for (count = 0; count < 128; count++) {
rc = kwboot_tty_send(tty, msg, 8); rc = kwboot_tty_send(tty, msg, 8, 0);
if (rc) { if (rc) {
usleep(msg_req_delay * 1000); usleep(msg_req_delay * 1000);
continue; continue;
@ -736,7 +765,7 @@ kwboot_debugmsg(int tty, void *msg)
if (rc) if (rc)
break; break;
rc = kwboot_tty_send(tty, msg, 8); rc = kwboot_tty_send(tty, msg, 8, 0);
if (rc) { if (rc) {
usleep(msg_req_delay * 1000); usleep(msg_req_delay * 1000);
continue; continue;
@ -850,18 +879,14 @@ kwboot_baud_magic_handle(int fd, char c, int baudrate)
} }
static int static int
kwboot_xm_recv_reply(int fd, char *c, int allow_non_xm, int *non_xm_print, kwboot_xm_recv_reply(int fd, char *c, int nak_on_non_xm,
int allow_non_xm, int *non_xm_print,
int baudrate, int *baud_changed) int baudrate, int *baud_changed)
{ {
int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo; int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo;
uint64_t recv_until = _now() + timeout; uint64_t recv_until = _now() + timeout;
int rc; int rc;
if (non_xm_print)
*non_xm_print = 0;
if (baud_changed)
*baud_changed = 0;
while (1) { while (1) {
rc = kwboot_tty_recv(fd, c, 1, timeout); rc = kwboot_tty_recv(fd, c, 1, timeout);
if (rc) { if (rc) {
@ -903,6 +928,10 @@ kwboot_xm_recv_reply(int fd, char *c, int allow_non_xm, int *non_xm_print,
*non_xm_print = 1; *non_xm_print = 1;
} }
} else { } else {
if (nak_on_non_xm) {
*c = NAK;
break;
}
timeout = recv_until - _now(); timeout = recv_until - _now();
if (timeout < 0) { if (timeout < 0) {
errno = ETIMEDOUT; errno = ETIMEDOUT;
@ -923,10 +952,12 @@ kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
char c; char c;
*done_print = 0; *done_print = 0;
non_xm_print = 0;
baud_changed = 0;
retries = 16; retries = 0;
do { do {
rc = kwboot_tty_send(fd, block, sizeof(*block)); rc = kwboot_tty_send(fd, block, sizeof(*block), 1);
if (rc) if (rc)
return rc; return rc;
@ -936,14 +967,15 @@ kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
*done_print = 1; *done_print = 1;
} }
rc = kwboot_xm_recv_reply(fd, &c, allow_non_xm, &non_xm_print, rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
allow_non_xm, &non_xm_print,
baudrate, &baud_changed); baudrate, &baud_changed);
if (rc) if (rc)
goto can; goto can;
if (!allow_non_xm && c != ACK) if (!allow_non_xm && c != ACK)
kwboot_progress(-1, '+'); kwboot_progress(-1, '+');
} while (c == NAK && retries-- > 0); } while (c == NAK && retries++ < 16);
if (non_xm_print) if (non_xm_print)
kwboot_printv("\n"); kwboot_printv("\n");
@ -972,16 +1004,17 @@ kwboot_xm_finish(int fd)
kwboot_printv("Finishing transfer\n"); kwboot_printv("Finishing transfer\n");
retries = 16; retries = 0;
do { do {
rc = kwboot_tty_send_char(fd, EOT); rc = kwboot_tty_send_char(fd, EOT);
if (rc) if (rc)
return rc; return rc;
rc = kwboot_xm_recv_reply(fd, &c, 0, NULL, 0, NULL); rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
0, NULL, 0, NULL);
if (rc) if (rc)
return rc; return rc;
} while (c == NAK && retries-- > 0); } while (c == NAK && retries++ < 16);
return _xm_reply_to_error(c); return _xm_reply_to_error(c);
} }
@ -1062,18 +1095,6 @@ kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate)
return rc; return rc;
if (baudrate) { if (baudrate) {
char buf[sizeof(kwb_baud_magic)];
/* Wait 1s for baudrate change magic */
rc = kwboot_tty_recv(tty, buf, sizeof(buf), 1000);
if (rc)
return rc;
if (memcmp(buf, kwb_baud_magic, sizeof(buf))) {
errno = EPROTO;
return -1;
}
kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n"); kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n");
rc = kwboot_tty_change_baudrate(tty, 115200); rc = kwboot_tty_change_baudrate(tty, 115200);
if (rc) if (rc)
@ -1151,6 +1172,7 @@ kwboot_terminal(int tty)
fd_set rfds; fd_set rfds;
int nfds = 0; int nfds = 0;
FD_ZERO(&rfds);
FD_SET(tty, &rfds); FD_SET(tty, &rfds);
nfds = nfds < tty ? tty : nfds; nfds = nfds < tty ? tty : nfds;
@ -1249,6 +1271,37 @@ kwboot_hdr_csum8(const void *hdr)
return csum; return csum;
} }
static uint32_t *
kwboot_img_csum32_ptr(void *img)
{
struct main_hdr_v1 *hdr = img;
uint32_t datasz;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
return img + le32_to_cpu(hdr->srcaddr) + datasz;
}
static uint32_t
kwboot_img_csum32(const void *img)
{
const struct main_hdr_v1 *hdr = img;
uint32_t datasz, csum = 0;
const uint32_t *data;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum);
if (datasz % sizeof(uint32_t))
return 0;
data = img + le32_to_cpu(hdr->srcaddr);
while (datasz > 0) {
csum += le32_to_cpu(*data++);
datasz -= 4;
}
return cpu_to_le32(csum);
}
static int static int
kwboot_img_is_secure(void *img) kwboot_img_is_secure(void *img)
{ {
@ -1262,34 +1315,22 @@ kwboot_img_is_secure(void *img)
} }
static void * static void *
kwboot_img_grow_data_left(void *img, size_t *size, size_t grow) kwboot_img_grow_data_right(void *img, size_t *size, size_t grow)
{ {
uint32_t hdrsz, datasz, srcaddr;
struct main_hdr_v1 *hdr = img; struct main_hdr_v1 *hdr = img;
uint8_t *data; void *result;
srcaddr = le32_to_cpu(hdr->srcaddr); /*
* 32-bit checksum comes after end of image code, so we will be putting
hdrsz = kwbheader_size(hdr); * new code there. So we get this pointer and then increase data size
data = (uint8_t *)img + srcaddr; * (since increasing data size changes kwboot_img_csum32_ptr() return
datasz = *size - srcaddr; * value).
*/
/* only move data if there is not enough space */ result = kwboot_img_csum32_ptr(img);
if (hdrsz + grow > srcaddr) {
size_t need = hdrsz + grow - srcaddr;
/* move data by enough bytes */
memmove(data + need, data, datasz);
*size += need;
srcaddr += need;
}
srcaddr -= grow;
hdr->srcaddr = cpu_to_le32(srcaddr);
hdr->destaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) - grow);
hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow); hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow);
*size += grow;
return (uint8_t *)img + srcaddr; return result;
} }
static void static void
@ -1297,11 +1338,20 @@ kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
{ {
uint32_t hdrsz, datasz, srcaddr; uint32_t hdrsz, datasz, srcaddr;
struct main_hdr_v1 *hdr = img; struct main_hdr_v1 *hdr = img;
struct opt_hdr_v1 *ohdr;
uint8_t *data; uint8_t *data;
srcaddr = le32_to_cpu(hdr->srcaddr); srcaddr = le32_to_cpu(hdr->srcaddr);
hdrsz = kwbheader_size(img); /* calculate real used space in kwbimage header */
if (kwbimage_version(img) == 0) {
hdrsz = kwbheader_size(img);
} else {
hdrsz = sizeof(*hdr);
for_each_opt_hdr_v1 (ohdr, hdr)
hdrsz += opt_hdr_v1_size(ohdr);
}
data = (uint8_t *)img + srcaddr; data = (uint8_t *)img + srcaddr;
datasz = *size - srcaddr; datasz = *size - srcaddr;
@ -1318,8 +1368,10 @@ kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
if (kwbimage_version(img) == 1) { if (kwbimage_version(img) == 1) {
hdrsz += grow; hdrsz += grow;
hdr->headersz_msb = hdrsz >> 16; if (hdrsz > kwbheader_size(img)) {
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff); hdr->headersz_msb = hdrsz >> 16;
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
}
} }
} }
@ -1331,17 +1383,18 @@ kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
uint32_t num_args; uint32_t num_args;
uint32_t offset; uint32_t offset;
uint32_t ohdrsz; uint32_t ohdrsz;
uint8_t *prev_ext;
if (hdr->ext & 0x1) { if (hdr->ext & 0x1) {
for_each_opt_hdr_v1 (ohdr, img) for_each_opt_hdr_v1 (ohdr, img)
if (opt_hdr_v1_next(ohdr) == NULL) if (opt_hdr_v1_next(ohdr) == NULL)
break; break;
*opt_hdr_v1_ext(ohdr) |= 1; prev_ext = opt_hdr_v1_ext(ohdr);
ohdr = opt_hdr_v1_next(ohdr); ohdr = _opt_hdr_v1_next(ohdr);
} else { } else {
hdr->ext |= 1;
ohdr = (void *)(hdr + 1); ohdr = (void *)(hdr + 1);
prev_ext = &hdr->ext;
} }
/* /*
@ -1356,6 +1409,8 @@ kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4; ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4;
kwboot_img_grow_hdr(hdr, size, ohdrsz); kwboot_img_grow_hdr(hdr, size, ohdrsz);
*prev_ext |= 1;
ohdr->headertype = OPT_HDR_V1_BINARY_TYPE; ohdr->headertype = OPT_HDR_V1_BINARY_TYPE;
ohdr->headersz_msb = ohdrsz >> 16; ohdr->headersz_msb = ohdrsz >> 16;
ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff); ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff);
@ -1367,35 +1422,51 @@ kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
} }
static void static void
_copy_baudrate_change_code(struct main_hdr_v1 *hdr, void *dst, int pre, _inject_baudrate_change_code(void *img, size_t *size, int for_data,
int old_baud, int new_baud) int old_baud, int new_baud)
{ {
size_t codesz = sizeof(kwboot_baud_code); struct main_hdr_v1 *hdr = img;
uint8_t *code = dst; uint32_t orig_datasz;
uint32_t codesz;
uint8_t *code;
if (pre) { if (for_data) {
size_t presz = sizeof(kwboot_pre_baud_code); orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
/* codesz = sizeof(kwboot_baud_code) +
* We need to prepend code that loads lr register with original sizeof(kwboot_baud_code_data_jump);
* value of hdr->execaddr. We do this by putting the original code = kwboot_img_grow_data_right(img, size, codesz);
* exec address before the code that loads it relatively from } else {
* it's beginning. codesz = sizeof(kwboot_baud_code_binhdr_pre) +
* Afterwards we change the exec address to this code (which is sizeof(kwboot_baud_code) +
* at offset 4, because the first 4 bytes contain the original sizeof(kwboot_baud_code_binhdr_post);
* exec address). code = kwboot_add_bin_ohdr_v1(img, size, codesz);
*/
memcpy(code, kwboot_pre_baud_code, presz);
*(uint32_t *)code = hdr->execaddr;
hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + 4); codesz = sizeof(kwboot_baud_code_binhdr_pre);
memcpy(code, kwboot_baud_code_binhdr_pre, codesz);
code += presz; code += codesz;
} }
memcpy(code, kwboot_baud_code, codesz - 8); codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t);
*(uint32_t *)(code + codesz - 8) = cpu_to_le32(old_baud); memcpy(code, kwboot_baud_code, codesz);
*(uint32_t *)(code + codesz - 4) = cpu_to_le32(new_baud); code += codesz;
*(uint32_t *)code = cpu_to_le32(old_baud);
code += sizeof(uint32_t);
*(uint32_t *)code = cpu_to_le32(new_baud);
code += sizeof(uint32_t);
if (for_data) {
codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t);
memcpy(code, kwboot_baud_code_data_jump, codesz);
code += codesz;
*(uint32_t *)code = hdr->execaddr;
code += sizeof(uint32_t);
hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz);
} else {
codesz = sizeof(kwboot_baud_code_binhdr_post);
memcpy(code, kwboot_baud_code_binhdr_post, codesz);
code += codesz;
}
} }
static int static int
@ -1460,6 +1531,9 @@ kwboot_img_patch(void *img, size_t *size, int baudrate)
*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize)) *size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize))
goto err; goto err;
if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img))
goto err;
is_secure = kwboot_img_is_secure(img); is_secure = kwboot_img_is_secure(img);
if (hdr->blockid != IBR_HDR_UART_ID) { if (hdr->blockid != IBR_HDR_UART_ID) {
@ -1474,15 +1548,23 @@ kwboot_img_patch(void *img, size_t *size, int baudrate)
} }
if (!is_secure) { if (!is_secure) {
if (image_ver == 1) {
/*
* Tell BootROM to send BootROM messages to UART port
* number 0 (used also for UART booting) with default
* baudrate (which should be 115200) and do not touch
* UART MPP configuration.
*/
hdr->options &= ~0x1F;
hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT;
hdr->options |= 0 << 3;
}
if (image_ver == 0) if (image_ver == 0)
((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED; ((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED;
hdr->nandpagesize = 0; hdr->nandpagesize = 0;
} }
if (baudrate) { if (baudrate) {
uint32_t codesz = sizeof(kwboot_baud_code);
void *code;
if (image_ver == 0) { if (image_ver == 0) {
fprintf(stderr, fprintf(stderr,
"Cannot inject code for changing baudrate into v0 image header\n"); "Cannot inject code for changing baudrate into v0 image header\n");
@ -1503,28 +1585,26 @@ kwboot_img_patch(void *img, size_t *size, int baudrate)
*/ */
kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n", kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n",
baudrate); baudrate);
_inject_baudrate_change_code(img, size, 0, 115200, baudrate);
code = kwboot_add_bin_ohdr_v1(img, size, codesz);
_copy_baudrate_change_code(hdr, code, 0, 115200, baudrate);
/* /*
* Now inject code that changes the baudrate back to 115200 Bd. * Now inject code that changes the baudrate back to 115200 Bd.
* This code is prepended to the data part of the image, so it * This code is appended after the data part of the image, and
* is executed before U-Boot proper. * execaddr is changed so that it is executed before U-Boot
* proper.
*/ */
kwboot_printv("Injecting code for changing baudrate back\n"); kwboot_printv("Injecting code for changing baudrate back\n");
_inject_baudrate_change_code(img, size, 1, baudrate, 115200);
codesz += sizeof(kwboot_pre_baud_code); /* Update the 32-bit data checksum */
code = kwboot_img_grow_data_left(img, size, codesz); *kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
_copy_baudrate_change_code(hdr, code, 1, baudrate, 115200);
/* recompute header size */ /* recompute header size */
hdrsz = kwbheader_size(hdr); hdrsz = kwbheader_size(hdr);
} }
if (hdrsz % KWBOOT_XM_BLKSZ) { if (hdrsz % KWBOOT_XM_BLKSZ) {
size_t offset = (KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ) % size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ;
KWBOOT_XM_BLKSZ;
if (is_secure) { if (is_secure) {
fprintf(stderr, "Cannot align image with secure header\n"); fprintf(stderr, "Cannot align image with secure header\n");
@ -1532,7 +1612,7 @@ kwboot_img_patch(void *img, size_t *size, int baudrate)
} }
kwboot_printv("Aligning image header to Xmodem block size\n"); kwboot_printv("Aligning image header to Xmodem block size\n");
kwboot_img_grow_hdr(img, size, offset); kwboot_img_grow_hdr(img, size, grow);
} }
hdr->checksum = kwboot_hdr_csum8(hdr) - csum; hdr->checksum = kwboot_hdr_csum8(hdr) - csum;
@ -1669,9 +1749,14 @@ main(int argc, char **argv)
baudrate = 0; baudrate = 0;
else else
/* ensure we have enough space for baudrate change code */ /* ensure we have enough space for baudrate change code */
after_img_rsv += KWBOOT_BAUDRATE_BIN_HEADER_SZ + after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 +
sizeof(kwboot_pre_baud_code) + sizeof(kwboot_baud_code_binhdr_pre) +
sizeof(kwboot_baud_code); sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_binhdr_post) +
KWBOOT_XM_BLKSZ +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_data_jump) +
KWBOOT_XM_BLKSZ;
if (imgpath) { if (imgpath) {
img = kwboot_read_image(imgpath, &size, after_img_rsv); img = kwboot_read_image(imgpath, &size, after_img_rsv);