NAND FSL UPM: driver re-write using the hwcontrol callback

This is a re-write of the NAND FSL UPM driver using the more universal
hwcontrol callback (instead of the cmdfunc callback). Here is a brief
list of furher modifications:

- For the time being, the UPM setup writing the UPM array has been
  removed from the driver and must now be done by the board specific
  code.

- The bus width definition in "struct fsl_upm_nand" is now in bits to
  comply with the corresponding Linux driver and 8, 16 and 32 bit
  accesses are supported.

- chip->dev_read is only set if fun->dev_ready != NULL, which is
  required for boards not connecting the R/B pin.

- A few issue have been fixed with MxMR bit manipulation like in the
  corresponding Linux driver.

Note: I think the "io_addr" field of "struct fsl_upm" could be removed
      as well, because the address is already determined by
      "nand->IO_ADDR_[RW]", but I'm not 100% sure.

This patch has been tested on a TQM8548 modules with the NAND chip
Micron MT29F8G08FABWP.

This patch is based on the following patches posted to this list a few
minutes ago:

  PPC: add accessor macros to clear and set bits in one shot
  83xx/85xx/86xx: add more MxMR local bus definitions

Signed-off-by: Wolfgang Grandegger <wg@grandegger.com>
Acked-by: Anton Vorontsov <avorontsov@ru.mvista.com>
This commit is contained in:
Wolfgang Grandegger 2008-06-05 13:02:29 +02:00 committed by Andrew Fleming-AFLEMING
parent 6beecfbb54
commit a75a57ef6e
2 changed files with 51 additions and 88 deletions

View file

@ -20,102 +20,56 @@
#include <linux/mtd/fsl_upm.h> #include <linux/mtd/fsl_upm.h>
#include <nand.h> #include <nand.h>
#define FSL_UPM_MxMR_OP_NO (0 << 28) /* normal operation */ static int fsl_upm_in_pattern;
#define FSL_UPM_MxMR_OP_WA (1 << 28) /* write array */
#define FSL_UPM_MxMR_OP_RA (2 << 28) /* read array */
#define FSL_UPM_MxMR_OP_RP (3 << 28) /* run pattern */
static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset) static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset)
{ {
out_be32(upm->mxmr, FSL_UPM_MxMR_OP_RP | pat_offset); clrsetbits_be32(upm->mxmr, MxMR_MAD_MSK, MxMR_OP_RUNP | pat_offset);
} }
static void fsl_upm_end_pattern(struct fsl_upm *upm) static void fsl_upm_end_pattern(struct fsl_upm *upm)
{ {
out_be32(upm->mxmr, FSL_UPM_MxMR_OP_NO); clrbits_be32(upm->mxmr, MxMR_OP_RUNP);
while (in_be32(upm->mxmr) != FSL_UPM_MxMR_OP_NO)
while (in_be32(upm->mxmr) & MxMR_OP_RUNP)
eieio(); eieio();
} }
static void fsl_upm_run_pattern(struct fsl_upm *upm, int width, u32 cmd) static void fsl_upm_run_pattern(struct fsl_upm *upm, int width, u32 cmd)
{ {
out_be32(upm->mar, cmd << (32 - width * 8)); out_be32(upm->mar, cmd << (32 - width));
out_8(upm->io_addr, 0x0); switch (width) {
} case 8:
static void fsl_upm_setup(struct fsl_upm *upm)
{
int i;
/* write upm array */
out_be32(upm->mxmr, FSL_UPM_MxMR_OP_WA);
for (i = 0; i < 64; i++) {
out_be32(upm->mdr, upm->array[i]);
out_8(upm->io_addr, 0x0); out_8(upm->io_addr, 0x0);
break;
case 16:
out_be16(upm->io_addr, 0x0);
break;
case 32:
out_be32(upm->io_addr, 0x0);
break;
} }
/* normal operation */
out_be32(upm->mxmr, FSL_UPM_MxMR_OP_NO);
while (in_be32(upm->mxmr) != FSL_UPM_MxMR_OP_NO)
eieio();
} }
static void fun_cmdfunc(struct mtd_info *mtd, unsigned command, int column, static void nand_hwcontrol (struct mtd_info *mtd, int cmd)
int page_addr)
{ {
struct nand_chip *chip = mtd->priv; struct nand_chip *chip = mtd->priv;
struct fsl_upm_nand *fun = chip->priv; struct fsl_upm_nand *fun = chip->priv;
fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); switch (cmd) {
case NAND_CTL_SETCLE:
if (command == NAND_CMD_SEQIN) { fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
int readcmd; fsl_upm_in_pattern++;
break;
if (column >= mtd->oobblock) { case NAND_CTL_SETALE:
/* OOB area */ fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
column -= mtd->oobblock; fsl_upm_in_pattern++;
readcmd = NAND_CMD_READOOB; break;
} else if (column < 256) { case NAND_CTL_CLRCLE:
/* First 256 bytes --> READ0 */ case NAND_CTL_CLRALE:
readcmd = NAND_CMD_READ0; fsl_upm_end_pattern(&fun->upm);
} else { fsl_upm_in_pattern--;
column -= 256; break;
readcmd = NAND_CMD_READ1;
}
fsl_upm_run_pattern(&fun->upm, fun->width, readcmd);
}
fsl_upm_run_pattern(&fun->upm, fun->width, command);
fsl_upm_end_pattern(&fun->upm);
fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
if (column != -1)
fsl_upm_run_pattern(&fun->upm, fun->width, column);
if (page_addr != -1) {
fsl_upm_run_pattern(&fun->upm, fun->width, page_addr);
fsl_upm_run_pattern(&fun->upm, fun->width,
(page_addr >> 8) & 0xFF);
if (chip->chipsize > (32 << 20)) {
fsl_upm_run_pattern(&fun->upm, fun->width,
(page_addr >> 16) & 0x0f);
}
}
fsl_upm_end_pattern(&fun->upm);
if (fun->wait_pattern) {
/*
* Some boards/chips needs this. At least on MPC8360E-RDK we
* need it. Probably weird chip, because I don't see any need
* for this on MPC8555E + Samsung K9F1G08U0A. Usually here are
* 0-2 unexpected busy states per block read.
*/
while (!fun->dev_ready())
debug("unexpected busy state\n");
} }
} }
@ -123,7 +77,24 @@ static void nand_write_byte(struct mtd_info *mtd, u_char byte)
{ {
struct nand_chip *chip = mtd->priv; struct nand_chip *chip = mtd->priv;
out_8(chip->IO_ADDR_W, byte); if (fsl_upm_in_pattern) {
struct fsl_upm_nand *fun = chip->priv;
fsl_upm_run_pattern(&fun->upm, fun->width, byte);
/*
* Some boards/chips needs this. At least on MPC8360E-RDK we
* need it. Probably weird chip, because I don't see any need
* for this on MPC8555E + Samsung K9F1G08U0A. Usually here are
* 0-2 unexpected busy states per block read.
*/
if (fun->wait_pattern) {
while (!fun->dev_ready())
debug("unexpected busy state\n");
}
} else {
out_8(chip->IO_ADDR_W, byte);
}
} }
static u8 nand_read_byte(struct mtd_info *mtd) static u8 nand_read_byte(struct mtd_info *mtd)
@ -164,10 +135,6 @@ static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
return 0; return 0;
} }
static void nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
}
static int nand_dev_ready(struct mtd_info *mtd) static int nand_dev_ready(struct mtd_info *mtd)
{ {
struct nand_chip *chip = mtd->priv; struct nand_chip *chip = mtd->priv;
@ -178,23 +145,20 @@ static int nand_dev_ready(struct mtd_info *mtd)
int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun) int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun)
{ {
/* yet only 8 bit accessors implemented */ if (fun->width != 8 && fun->width != 16 && fun->width != 32)
if (fun->width != 1)
return -ENOSYS; return -ENOSYS;
fsl_upm_setup(&fun->upm);
chip->priv = fun; chip->priv = fun;
chip->chip_delay = fun->chip_delay; chip->chip_delay = fun->chip_delay;
chip->eccmode = NAND_ECC_SOFT; chip->eccmode = NAND_ECC_SOFT;
chip->cmdfunc = fun_cmdfunc;
chip->hwcontrol = nand_hwcontrol; chip->hwcontrol = nand_hwcontrol;
chip->read_byte = nand_read_byte; chip->read_byte = nand_read_byte;
chip->read_buf = nand_read_buf; chip->read_buf = nand_read_buf;
chip->write_byte = nand_write_byte; chip->write_byte = nand_write_byte;
chip->write_buf = nand_write_buf; chip->write_buf = nand_write_buf;
chip->verify_buf = nand_verify_buf; chip->verify_buf = nand_verify_buf;
chip->dev_ready = nand_dev_ready; if (fun->dev_ready)
chip->dev_ready = nand_dev_ready;
return 0; return 0;
} }

View file

@ -16,7 +16,6 @@
#include <linux/mtd/nand.h> #include <linux/mtd/nand.h>
struct fsl_upm { struct fsl_upm {
const u32 *array;
void __iomem *mdr; void __iomem *mdr;
void __iomem *mxmr; void __iomem *mxmr;
void __iomem *mar; void __iomem *mar;