mirror of
https://github.com/Fishwaldo/u-boot.git
synced 2025-06-25 16:12:05 +00:00
doc: driver-model: Convert README.txt to reST
Convert plain text documentation to reStructuredText format and add it to Sphinx TOC tree. No essential content change. Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
This commit is contained in:
parent
d9756c41f9
commit
ed205e677b
2 changed files with 305 additions and 278 deletions
|
@ -1,40 +1,46 @@
|
||||||
Driver Model
|
.. SPDX-License-Identifier: GPL-2.0+
|
||||||
============
|
.. sectionauthor:: Simon Glass <sjg@chromium.org>
|
||||||
|
|
||||||
|
Design Details
|
||||||
|
==============
|
||||||
|
|
||||||
This README contains high-level information about driver model, a unified
|
This README contains high-level information about driver model, a unified
|
||||||
way of declaring and accessing drivers in U-Boot. The original work was done
|
way of declaring and accessing drivers in U-Boot. The original work was done
|
||||||
by:
|
by:
|
||||||
|
|
||||||
Marek Vasut <marex@denx.de>
|
* Marek Vasut <marex@denx.de>
|
||||||
Pavel Herrmann <morpheus.ibis@gmail.com>
|
* Pavel Herrmann <morpheus.ibis@gmail.com>
|
||||||
Viktor Křivák <viktor.krivak@gmail.com>
|
* Viktor Křivák <viktor.krivak@gmail.com>
|
||||||
Tomas Hlavacek <tmshlvck@gmail.com>
|
* Tomas Hlavacek <tmshlvck@gmail.com>
|
||||||
|
|
||||||
This has been both simplified and extended into the current implementation
|
This has been both simplified and extended into the current implementation
|
||||||
by:
|
by:
|
||||||
|
|
||||||
Simon Glass <sjg@chromium.org>
|
* Simon Glass <sjg@chromium.org>
|
||||||
|
|
||||||
|
|
||||||
Terminology
|
Terminology
|
||||||
-----------
|
-----------
|
||||||
|
|
||||||
Uclass - a group of devices which operate in the same way. A uclass provides
|
Uclass
|
||||||
|
a group of devices which operate in the same way. A uclass provides
|
||||||
a way of accessing individual devices within the group, but always
|
a way of accessing individual devices within the group, but always
|
||||||
using the same interface. For example a GPIO uclass provides
|
using the same interface. For example a GPIO uclass provides
|
||||||
operations for get/set value. An I2C uclass may have 10 I2C ports,
|
operations for get/set value. An I2C uclass may have 10 I2C ports,
|
||||||
4 with one driver, and 6 with another.
|
4 with one driver, and 6 with another.
|
||||||
|
|
||||||
Driver - some code which talks to a peripheral and presents a higher-level
|
Driver
|
||||||
|
some code which talks to a peripheral and presents a higher-level
|
||||||
interface to it.
|
interface to it.
|
||||||
|
|
||||||
Device - an instance of a driver, tied to a particular port or peripheral.
|
Device
|
||||||
|
an instance of a driver, tied to a particular port or peripheral.
|
||||||
|
|
||||||
|
|
||||||
How to try it
|
How to try it
|
||||||
-------------
|
-------------
|
||||||
|
|
||||||
Build U-Boot sandbox and run it:
|
Build U-Boot sandbox and run it::
|
||||||
|
|
||||||
make sandbox_defconfig
|
make sandbox_defconfig
|
||||||
make
|
make
|
||||||
|
@ -56,31 +62,31 @@ provide good code coverage of them. It does have multiple drivers, it
|
||||||
handles parameter data and platdata (data which tells the driver how
|
handles parameter data and platdata (data which tells the driver how
|
||||||
to operate on a particular platform) and it uses private driver data.
|
to operate on a particular platform) and it uses private driver data.
|
||||||
|
|
||||||
To try it, see the example session below:
|
To try it, see the example session below::
|
||||||
|
|
||||||
=>demo hello 1
|
=>demo hello 1
|
||||||
Hello '@' from 07981110: red 4
|
Hello '@' from 07981110: red 4
|
||||||
=>demo status 2
|
=>demo status 2
|
||||||
Status: 0
|
Status: 0
|
||||||
=>demo hello 2
|
=>demo hello 2
|
||||||
g
|
g
|
||||||
r@
|
r@
|
||||||
e@@
|
e@@
|
||||||
e@@@
|
e@@@
|
||||||
n@@@@
|
n@@@@
|
||||||
g@@@@@
|
g@@@@@
|
||||||
=>demo status 2
|
=>demo status 2
|
||||||
Status: 21
|
Status: 21
|
||||||
=>demo hello 4 ^
|
=>demo hello 4 ^
|
||||||
y^^^
|
y^^^
|
||||||
e^^^^^
|
e^^^^^
|
||||||
l^^^^^^^
|
l^^^^^^^
|
||||||
l^^^^^^^
|
l^^^^^^^
|
||||||
o^^^^^
|
o^^^^^
|
||||||
w^^^
|
w^^^
|
||||||
=>demo status 4
|
=>demo status 4
|
||||||
Status: 36
|
Status: 36
|
||||||
=>
|
=>
|
||||||
|
|
||||||
|
|
||||||
Running the tests
|
Running the tests
|
||||||
|
@ -88,139 +94,139 @@ Running the tests
|
||||||
|
|
||||||
The intent with driver model is that the core portion has 100% test coverage
|
The intent with driver model is that the core portion has 100% test coverage
|
||||||
in sandbox, and every uclass has its own test. As a move towards this, tests
|
in sandbox, and every uclass has its own test. As a move towards this, tests
|
||||||
are provided in test/dm. To run them, try:
|
are provided in test/dm. To run them, try::
|
||||||
|
|
||||||
./test/py/test.py --bd sandbox --build -k ut_dm -v
|
./test/py/test.py --bd sandbox --build -k ut_dm -v
|
||||||
|
|
||||||
You should see something like this:
|
You should see something like this::
|
||||||
|
|
||||||
(venv)$ ./test/py/test.py --bd sandbox --build -k ut_dm -v
|
(venv)$ ./test/py/test.py --bd sandbox --build -k ut_dm -v
|
||||||
+make O=/root/u-boot/build-sandbox -s sandbox_defconfig
|
+make O=/root/u-boot/build-sandbox -s sandbox_defconfig
|
||||||
+make O=/root/u-boot/build-sandbox -s -j8
|
+make O=/root/u-boot/build-sandbox -s -j8
|
||||||
============================= test session starts ==============================
|
============================= test session starts ==============================
|
||||||
platform linux2 -- Python 2.7.5, pytest-2.9.0, py-1.4.31, pluggy-0.3.1 -- /root/u-boot/venv/bin/python
|
platform linux2 -- Python 2.7.5, pytest-2.9.0, py-1.4.31, pluggy-0.3.1 -- /root/u-boot/venv/bin/python
|
||||||
cachedir: .cache
|
cachedir: .cache
|
||||||
rootdir: /root/u-boot, inifile:
|
rootdir: /root/u-boot, inifile:
|
||||||
collected 199 items
|
collected 199 items
|
||||||
|
|
||||||
test/py/tests/test_ut.py::test_ut_dm_init PASSED
|
test/py/tests/test_ut.py::test_ut_dm_init PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_bind] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_bind] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_conversion] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_conversion] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_shot] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_shot] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_conversion] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_conversion] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_shot] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_shot] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_supply] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_supply] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_adc_wrong_channel_selection] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_adc_wrong_channel_selection] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_autobind] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_autobind] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_alloc] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_alloc] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_valid] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_valid] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_autoprobe] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_autoprobe] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind_uclass] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind_uclass] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_pre_probe_uclass] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_pre_probe_uclass] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_funcs] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_funcs] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_iterators] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_iterators] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data_uclass] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data_uclass] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_ops] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_ops] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata_uclass] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata_uclass] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_children] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_children] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_clk_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_clk_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_clk_periph] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_clk_periph] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_device_get_uclass_id] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_device_get_uclass_id] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_eth] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_eth] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_eth_act] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_eth_act] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_eth_alias] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_eth_alias] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_eth_prime] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_eth_prime] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_eth_rotate] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_eth_rotate] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_fdt] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_fdt] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_offset] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_offset] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_pre_reloc] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_pre_reloc] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_uclass_seq] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_uclass_seq] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_anon] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_anon] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_copy] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_copy] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_leak] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_leak] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_phandles] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_phandles] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_requestf] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_requestf] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_bytewise] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_bytewise] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_find] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_find] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset_len] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset_len] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_probe_empty] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_probe_empty] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_read_write] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_read_write] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_speed] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_speed] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_leak] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_leak] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_led_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_led_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_led_gpio] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_led_gpio] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_led_label] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_led_label] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_lifecycle] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_lifecycle] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_mmc_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_mmc_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_net_retry] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_net_retry] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_operations] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_operations] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_ordering] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_ordering] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_pci_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_pci_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_pci_busnum] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_pci_busnum] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_pci_swapcase] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_pci_swapcase] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_platdata] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_platdata] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_get] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_get] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_io] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_io] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset_list] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset_list] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_get] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_get] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_current] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_current] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_enable] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_enable] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_mode] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_mode] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_voltage] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_voltage] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_pre_reloc] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_pre_reloc] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_ram_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_ram_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_syscon] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_syscon] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_remoteproc_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_remoteproc_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_remove] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_remove] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_reset_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_reset_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_reset_walk] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_reset_walk] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_dual] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_dual] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_reset] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_reset] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_set_get] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_set_get] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_spi_find] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_spi_find] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_spi_flash] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_spi_flash] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_spi_xfer] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_spi_xfer] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_by_driver_data] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_by_driver_data] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_timer_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_timer_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_before_ready] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_before_ready] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find_by_name] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find_by_name] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get_by_name] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get_by_name] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_flash] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_flash] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_keyb] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_keyb] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_multi] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_multi] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_remove] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_remove] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_remove] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_remove] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_reorder] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_reorder] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_base] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_base] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp_comp] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp_comp] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_chars] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_chars] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_context] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_context] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation1] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation1] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation2] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation2] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation3] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation3] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_text] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_text] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_bs] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_bs] PASSED
|
||||||
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_scroll] PASSED
|
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_scroll] PASSED
|
||||||
|
|
||||||
======================= 84 tests deselected by '-kut_dm' =======================
|
======================= 84 tests deselected by '-kut_dm' =======================
|
||||||
================== 115 passed, 84 deselected in 3.77 seconds ===================
|
================== 115 passed, 84 deselected in 3.77 seconds ===================
|
||||||
|
|
||||||
What is going on?
|
What is going on?
|
||||||
-----------------
|
-----------------
|
||||||
|
@ -228,6 +234,8 @@ What is going on?
|
||||||
Let's start at the top. The demo command is in common/cmd_demo.c. It does
|
Let's start at the top. The demo command is in common/cmd_demo.c. It does
|
||||||
the usual command processing and then:
|
the usual command processing and then:
|
||||||
|
|
||||||
|
.. code-block:: c
|
||||||
|
|
||||||
struct udevice *demo_dev;
|
struct udevice *demo_dev;
|
||||||
|
|
||||||
ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);
|
ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);
|
||||||
|
@ -245,6 +253,8 @@ The device is automatically activated ready for use by uclass_get_device().
|
||||||
|
|
||||||
Now that we have the device we can do things like:
|
Now that we have the device we can do things like:
|
||||||
|
|
||||||
|
.. code-block:: c
|
||||||
|
|
||||||
return demo_hello(demo_dev, ch);
|
return demo_hello(demo_dev, ch);
|
||||||
|
|
||||||
This function is in the demo uclass. It takes care of calling the 'hello'
|
This function is in the demo uclass. It takes care of calling the 'hello'
|
||||||
|
@ -253,28 +263,32 @@ this particular device may use one or other of them.
|
||||||
|
|
||||||
The code for demo_hello() is in drivers/demo/demo-uclass.c:
|
The code for demo_hello() is in drivers/demo/demo-uclass.c:
|
||||||
|
|
||||||
int demo_hello(struct udevice *dev, int ch)
|
.. code-block:: c
|
||||||
{
|
|
||||||
|
int demo_hello(struct udevice *dev, int ch)
|
||||||
|
{
|
||||||
const struct demo_ops *ops = device_get_ops(dev);
|
const struct demo_ops *ops = device_get_ops(dev);
|
||||||
|
|
||||||
if (!ops->hello)
|
if (!ops->hello)
|
||||||
return -ENOSYS;
|
return -ENOSYS;
|
||||||
|
|
||||||
return ops->hello(dev, ch);
|
return ops->hello(dev, ch);
|
||||||
}
|
}
|
||||||
|
|
||||||
As you can see it just calls the relevant driver method. One of these is
|
As you can see it just calls the relevant driver method. One of these is
|
||||||
in drivers/demo/demo-simple.c:
|
in drivers/demo/demo-simple.c:
|
||||||
|
|
||||||
static int simple_hello(struct udevice *dev, int ch)
|
.. code-block:: c
|
||||||
{
|
|
||||||
|
static int simple_hello(struct udevice *dev, int ch)
|
||||||
|
{
|
||||||
const struct dm_demo_pdata *pdata = dev_get_platdata(dev);
|
const struct dm_demo_pdata *pdata = dev_get_platdata(dev);
|
||||||
|
|
||||||
printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
|
printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
|
||||||
pdata->colour, pdata->sides);
|
pdata->colour, pdata->sides);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
So that is a trip from top (command execution) to bottom (driver action)
|
So that is a trip from top (command execution) to bottom (driver action)
|
||||||
|
@ -287,17 +301,19 @@ Declaring Drivers
|
||||||
A driver declaration looks something like this (see
|
A driver declaration looks something like this (see
|
||||||
drivers/demo/demo-shape.c):
|
drivers/demo/demo-shape.c):
|
||||||
|
|
||||||
static const struct demo_ops shape_ops = {
|
.. code-block:: c
|
||||||
|
|
||||||
|
static const struct demo_ops shape_ops = {
|
||||||
.hello = shape_hello,
|
.hello = shape_hello,
|
||||||
.status = shape_status,
|
.status = shape_status,
|
||||||
};
|
};
|
||||||
|
|
||||||
U_BOOT_DRIVER(demo_shape_drv) = {
|
U_BOOT_DRIVER(demo_shape_drv) = {
|
||||||
.name = "demo_shape_drv",
|
.name = "demo_shape_drv",
|
||||||
.id = UCLASS_DEMO,
|
.id = UCLASS_DEMO,
|
||||||
.ops = &shape_ops,
|
.ops = &shape_ops,
|
||||||
.priv_data_size = sizeof(struct shape_data),
|
.priv_data_size = sizeof(struct shape_data),
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
This driver has two methods (hello and status) and requires a bit of
|
This driver has two methods (hello and status) and requires a bit of
|
||||||
|
@ -315,11 +331,11 @@ so driver model can find the drivers that are available.
|
||||||
The methods a device can provide are documented in the device.h header.
|
The methods a device can provide are documented in the device.h header.
|
||||||
Briefly, they are:
|
Briefly, they are:
|
||||||
|
|
||||||
bind - make the driver model aware of a device (bind it to its driver)
|
* bind - make the driver model aware of a device (bind it to its driver)
|
||||||
unbind - make the driver model forget the device
|
* unbind - make the driver model forget the device
|
||||||
ofdata_to_platdata - convert device tree data to platdata - see later
|
* ofdata_to_platdata - convert device tree data to platdata - see later
|
||||||
probe - make a device ready for use
|
* probe - make a device ready for use
|
||||||
remove - remove a device so it cannot be used until probed again
|
* remove - remove a device so it cannot be used until probed again
|
||||||
|
|
||||||
The sequence to get a device to work is bind, ofdata_to_platdata (if using
|
The sequence to get a device to work is bind, ofdata_to_platdata (if using
|
||||||
device tree) and probe.
|
device tree) and probe.
|
||||||
|
@ -328,14 +344,14 @@ device tree) and probe.
|
||||||
Platform Data
|
Platform Data
|
||||||
-------------
|
-------------
|
||||||
|
|
||||||
*** Note: platform data is the old way of doing things. It is
|
Note: platform data is the old way of doing things. It is
|
||||||
*** basically a C structure which is passed to drivers to tell them about
|
basically a C structure which is passed to drivers to tell them about
|
||||||
*** platform-specific settings like the address of its registers, bus
|
platform-specific settings like the address of its registers, bus
|
||||||
*** speed, etc. Device tree is now the preferred way of handling this.
|
speed, etc. Device tree is now the preferred way of handling this.
|
||||||
*** Unless you have a good reason not to use device tree (the main one
|
Unless you have a good reason not to use device tree (the main one
|
||||||
*** being you need serial support in SPL and don't have enough SRAM for
|
being you need serial support in SPL and don't have enough SRAM for
|
||||||
*** the cut-down device tree and libfdt libraries) you should stay away
|
the cut-down device tree and libfdt libraries) you should stay away
|
||||||
*** from platform data.
|
from platform data.
|
||||||
|
|
||||||
Platform data is like Linux platform data, if you are familiar with that.
|
Platform data is like Linux platform data, if you are familiar with that.
|
||||||
It provides the board-specific information to start up a device.
|
It provides the board-specific information to start up a device.
|
||||||
|
@ -384,10 +400,13 @@ Drivers can access their data via dev->info->platdata. Here is
|
||||||
the declaration for the platform data, which would normally appear
|
the declaration for the platform data, which would normally appear
|
||||||
in the board file.
|
in the board file.
|
||||||
|
|
||||||
|
.. code-block:: c
|
||||||
|
|
||||||
static const struct dm_demo_cdata red_square = {
|
static const struct dm_demo_cdata red_square = {
|
||||||
.colour = "red",
|
.colour = "red",
|
||||||
.sides = 4.
|
.sides = 4.
|
||||||
};
|
};
|
||||||
|
|
||||||
static const struct driver_info info[] = {
|
static const struct driver_info info[] = {
|
||||||
{
|
{
|
||||||
.name = "demo_shape_drv",
|
.name = "demo_shape_drv",
|
||||||
|
@ -409,6 +428,8 @@ necessary.
|
||||||
With device tree we replace the above code with the following device tree
|
With device tree we replace the above code with the following device tree
|
||||||
fragment:
|
fragment:
|
||||||
|
|
||||||
|
.. code-block:: c
|
||||||
|
|
||||||
red-square {
|
red-square {
|
||||||
compatible = "demo-shape";
|
compatible = "demo-shape";
|
||||||
colour = "red";
|
colour = "red";
|
||||||
|
@ -425,6 +446,8 @@ the board first!).
|
||||||
|
|
||||||
The easiest way to make this work it to add a few members to the driver:
|
The easiest way to make this work it to add a few members to the driver:
|
||||||
|
|
||||||
|
.. code-block:: c
|
||||||
|
|
||||||
.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
|
.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
|
||||||
.ofdata_to_platdata = testfdt_ofdata_to_platdata,
|
.ofdata_to_platdata = testfdt_ofdata_to_platdata,
|
||||||
|
|
||||||
|
@ -464,9 +487,11 @@ Declaring Uclasses
|
||||||
|
|
||||||
The demo uclass is declared like this:
|
The demo uclass is declared like this:
|
||||||
|
|
||||||
U_BOOT_CLASS(demo) = {
|
.. code-block:: c
|
||||||
|
|
||||||
|
U_BOOT_CLASS(demo) = {
|
||||||
.id = UCLASS_DEMO,
|
.id = UCLASS_DEMO,
|
||||||
};
|
};
|
||||||
|
|
||||||
It is also possible to specify special methods for probe, etc. The uclass
|
It is also possible to specify special methods for probe, etc. The uclass
|
||||||
numbering comes from include/dm/uclass.h. To add a new uclass, add to the
|
numbering comes from include/dm/uclass.h. To add a new uclass, add to the
|
||||||
|
@ -496,9 +521,11 @@ device will be automatically allocated the next available sequence number.
|
||||||
To specify the sequence number in the device tree an alias is typically
|
To specify the sequence number in the device tree an alias is typically
|
||||||
used. Make sure that the uclass has the DM_UC_FLAG_SEQ_ALIAS flag set.
|
used. Make sure that the uclass has the DM_UC_FLAG_SEQ_ALIAS flag set.
|
||||||
|
|
||||||
aliases {
|
.. code-block:: none
|
||||||
|
|
||||||
|
aliases {
|
||||||
serial2 = "/serial@22230000";
|
serial2 = "/serial@22230000";
|
||||||
};
|
};
|
||||||
|
|
||||||
This indicates that in the uclass called "serial", the named node
|
This indicates that in the uclass called "serial", the named node
|
||||||
("/serial@22230000") will be given sequence number 2. Any command or driver
|
("/serial@22230000") will be given sequence number 2. Any command or driver
|
||||||
|
@ -506,13 +533,15 @@ which requests serial device 2 will obtain this device.
|
||||||
|
|
||||||
More commonly you can use node references, which expand to the full path:
|
More commonly you can use node references, which expand to the full path:
|
||||||
|
|
||||||
aliases {
|
.. code-block:: none
|
||||||
|
|
||||||
|
aliases {
|
||||||
serial2 = &serial_2;
|
serial2 = &serial_2;
|
||||||
};
|
};
|
||||||
...
|
...
|
||||||
serial_2: serial@22230000 {
|
serial_2: serial@22230000 {
|
||||||
...
|
...
|
||||||
};
|
};
|
||||||
|
|
||||||
The alias resolves to the same string in this case, but this version is
|
The alias resolves to the same string in this case, but this version is
|
||||||
easier to read.
|
easier to read.
|
||||||
|
@ -547,7 +576,7 @@ children are bound and probed.
|
||||||
|
|
||||||
Here an explanation of how a bus fits with a uclass may be useful. Consider
|
Here an explanation of how a bus fits with a uclass may be useful. Consider
|
||||||
a USB bus with several devices attached to it, each from a different (made
|
a USB bus with several devices attached to it, each from a different (made
|
||||||
up) uclass:
|
up) uclass::
|
||||||
|
|
||||||
xhci_usb (UCLASS_USB)
|
xhci_usb (UCLASS_USB)
|
||||||
eth (UCLASS_ETHERNET)
|
eth (UCLASS_ETHERNET)
|
||||||
|
@ -579,7 +608,7 @@ Note that the information that controls this behaviour is in the bus's
|
||||||
driver, not the child's. In fact it is possible that child has no knowledge
|
driver, not the child's. In fact it is possible that child has no knowledge
|
||||||
that it is connected to a bus. The same child device may even be used on two
|
that it is connected to a bus. The same child device may even be used on two
|
||||||
different bus types. As an example. the 'flash' device shown above may also
|
different bus types. As an example. the 'flash' device shown above may also
|
||||||
be connected on a SATA bus or standalone with no bus:
|
be connected on a SATA bus or standalone with no bus::
|
||||||
|
|
||||||
xhci_usb (UCLASS_USB)
|
xhci_usb (UCLASS_USB)
|
||||||
flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by USB bus
|
flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by USB bus
|
||||||
|
@ -613,20 +642,21 @@ methods mentioned here are optional - e.g. if there is no probe() method for
|
||||||
a device then it will not be called. A simple device may have very few
|
a device then it will not be called. A simple device may have very few
|
||||||
methods actually defined.
|
methods actually defined.
|
||||||
|
|
||||||
1. Bind stage
|
Bind stage
|
||||||
|
^^^^^^^^^^
|
||||||
|
|
||||||
U-Boot discovers devices using one of these two methods:
|
U-Boot discovers devices using one of these two methods:
|
||||||
|
|
||||||
- Scan the U_BOOT_DEVICE() definitions. U-Boot looks up the name specified
|
- Scan the U_BOOT_DEVICE() definitions. U-Boot looks up the name specified
|
||||||
by each, to find the appropriate U_BOOT_DRIVER() definition. In this case,
|
by each, to find the appropriate U_BOOT_DRIVER() definition. In this case,
|
||||||
there is no path by which driver_data may be provided, but the U_BOOT_DEVICE()
|
there is no path by which driver_data may be provided, but the U_BOOT_DEVICE()
|
||||||
may provide platdata.
|
may provide platdata.
|
||||||
|
|
||||||
- Scan through the device tree definitions. U-Boot looks at top-level
|
- Scan through the device tree definitions. U-Boot looks at top-level
|
||||||
nodes in the the device tree. It looks at the compatible string in each node
|
nodes in the the device tree. It looks at the compatible string in each node
|
||||||
and uses the of_match table of the U_BOOT_DRIVER() structure to find the
|
and uses the of_match table of the U_BOOT_DRIVER() structure to find the
|
||||||
right driver for each node. In this case, the of_match table may provide a
|
right driver for each node. In this case, the of_match table may provide a
|
||||||
driver_data value, but platdata cannot be provided until later.
|
driver_data value, but platdata cannot be provided until later.
|
||||||
|
|
||||||
For each device that is discovered, U-Boot then calls device_bind() to create a
|
For each device that is discovered, U-Boot then calls device_bind() to create a
|
||||||
new device, initializes various core fields of the device object such as name,
|
new device, initializes various core fields of the device object such as name,
|
||||||
|
@ -653,45 +683,46 @@ probe/remove which is independent of bind/unbind. This is partly because in
|
||||||
U-Boot it may be expensive to probe devices and we don't want to do it until
|
U-Boot it may be expensive to probe devices and we don't want to do it until
|
||||||
they are needed, or perhaps until after relocation.
|
they are needed, or perhaps until after relocation.
|
||||||
|
|
||||||
2. Activation/probe
|
Activation/probe
|
||||||
|
^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
When a device needs to be used, U-Boot activates it, by following these
|
When a device needs to be used, U-Boot activates it, by following these
|
||||||
steps (see device_probe()):
|
steps (see device_probe()):
|
||||||
|
|
||||||
a. If priv_auto_alloc_size is non-zero, then the device-private space
|
1. If priv_auto_alloc_size is non-zero, then the device-private space
|
||||||
is allocated for the device and zeroed. It will be accessible as
|
is allocated for the device and zeroed. It will be accessible as
|
||||||
dev->priv. The driver can put anything it likes in there, but should use
|
dev->priv. The driver can put anything it likes in there, but should use
|
||||||
it for run-time information, not platform data (which should be static
|
it for run-time information, not platform data (which should be static
|
||||||
and known before the device is probed).
|
and known before the device is probed).
|
||||||
|
|
||||||
b. If platdata_auto_alloc_size is non-zero, then the platform data space
|
2. If platdata_auto_alloc_size is non-zero, then the platform data space
|
||||||
is allocated. This is only useful for device tree operation, since
|
is allocated. This is only useful for device tree operation, since
|
||||||
otherwise you would have to specific the platform data in the
|
otherwise you would have to specific the platform data in the
|
||||||
U_BOOT_DEVICE() declaration. The space is allocated for the device and
|
U_BOOT_DEVICE() declaration. The space is allocated for the device and
|
||||||
zeroed. It will be accessible as dev->platdata.
|
zeroed. It will be accessible as dev->platdata.
|
||||||
|
|
||||||
c. If the device's uclass specifies a non-zero per_device_auto_alloc_size,
|
3. If the device's uclass specifies a non-zero per_device_auto_alloc_size,
|
||||||
then this space is allocated and zeroed also. It is allocated for and
|
then this space is allocated and zeroed also. It is allocated for and
|
||||||
stored in the device, but it is uclass data. owned by the uclass driver.
|
stored in the device, but it is uclass data. owned by the uclass driver.
|
||||||
It is possible for the device to access it.
|
It is possible for the device to access it.
|
||||||
|
|
||||||
d. If the device's immediate parent specifies a per_child_auto_alloc_size
|
4. If the device's immediate parent specifies a per_child_auto_alloc_size
|
||||||
then this space is allocated. This is intended for use by the parent
|
then this space is allocated. This is intended for use by the parent
|
||||||
device to keep track of things related to the child. For example a USB
|
device to keep track of things related to the child. For example a USB
|
||||||
flash stick attached to a USB host controller would likely use this
|
flash stick attached to a USB host controller would likely use this
|
||||||
space. The controller can hold information about the USB state of each
|
space. The controller can hold information about the USB state of each
|
||||||
of its children.
|
of its children.
|
||||||
|
|
||||||
e. All parent devices are probed. It is not possible to activate a device
|
5. All parent devices are probed. It is not possible to activate a device
|
||||||
unless its predecessors (all the way up to the root device) are activated.
|
unless its predecessors (all the way up to the root device) are activated.
|
||||||
This means (for example) that an I2C driver will require that its bus
|
This means (for example) that an I2C driver will require that its bus
|
||||||
be activated.
|
be activated.
|
||||||
|
|
||||||
f. The device's sequence number is assigned, either the requested one
|
6. The device's sequence number is assigned, either the requested one
|
||||||
(assuming no conflicts) or the next available one if there is a conflict
|
(assuming no conflicts) or the next available one if there is a conflict
|
||||||
or nothing particular is requested.
|
or nothing particular is requested.
|
||||||
|
|
||||||
g. If the driver provides an ofdata_to_platdata() method, then this is
|
7. If the driver provides an ofdata_to_platdata() method, then this is
|
||||||
called to convert the device tree data into platform data. This should
|
called to convert the device tree data into platform data. This should
|
||||||
do various calls like fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), ...)
|
do various calls like fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), ...)
|
||||||
to access the node and store the resulting information into dev->platdata.
|
to access the node and store the resulting information into dev->platdata.
|
||||||
|
@ -707,7 +738,7 @@ steps (see device_probe()):
|
||||||
data, one day it is possible that U-Boot will cache platform data for
|
data, one day it is possible that U-Boot will cache platform data for
|
||||||
devices which are regularly de/activated).
|
devices which are regularly de/activated).
|
||||||
|
|
||||||
h. The device's probe() method is called. This should do anything that
|
8. The device's probe() method is called. This should do anything that
|
||||||
is required by the device to get it going. This could include checking
|
is required by the device to get it going. This could include checking
|
||||||
that the hardware is actually present, setting up clocks for the
|
that the hardware is actually present, setting up clocks for the
|
||||||
hardware and setting up hardware registers to initial values. The code
|
hardware and setting up hardware registers to initial values. The code
|
||||||
|
@ -722,40 +753,42 @@ steps (see device_probe()):
|
||||||
allocate the priv space here yourself. The same applies also to
|
allocate the priv space here yourself. The same applies also to
|
||||||
platdata_auto_alloc_size. Remember to free them in the remove() method.
|
platdata_auto_alloc_size. Remember to free them in the remove() method.
|
||||||
|
|
||||||
i. The device is marked 'activated'
|
9. The device is marked 'activated'
|
||||||
|
|
||||||
j. The uclass's post_probe() method is called, if one exists. This may
|
10. The uclass's post_probe() method is called, if one exists. This may
|
||||||
cause the uclass to do some housekeeping to record the device as
|
cause the uclass to do some housekeeping to record the device as
|
||||||
activated and 'known' by the uclass.
|
activated and 'known' by the uclass.
|
||||||
|
|
||||||
3. Running stage
|
Running stage
|
||||||
|
^^^^^^^^^^^^^
|
||||||
|
|
||||||
The device is now activated and can be used. From now until it is removed
|
The device is now activated and can be used. From now until it is removed
|
||||||
all of the above structures are accessible. The device appears in the
|
all of the above structures are accessible. The device appears in the
|
||||||
uclass's list of devices (so if the device is in UCLASS_GPIO it will appear
|
uclass's list of devices (so if the device is in UCLASS_GPIO it will appear
|
||||||
as a device in the GPIO uclass). This is the 'running' state of the device.
|
as a device in the GPIO uclass). This is the 'running' state of the device.
|
||||||
|
|
||||||
4. Removal stage
|
Removal stage
|
||||||
|
^^^^^^^^^^^^^
|
||||||
|
|
||||||
When the device is no-longer required, you can call device_remove() to
|
When the device is no-longer required, you can call device_remove() to
|
||||||
remove it. This performs the probe steps in reverse:
|
remove it. This performs the probe steps in reverse:
|
||||||
|
|
||||||
a. The uclass's pre_remove() method is called, if one exists. This may
|
1. The uclass's pre_remove() method is called, if one exists. This may
|
||||||
cause the uclass to do some housekeeping to record the device as
|
cause the uclass to do some housekeeping to record the device as
|
||||||
deactivated and no-longer 'known' by the uclass.
|
deactivated and no-longer 'known' by the uclass.
|
||||||
|
|
||||||
b. All the device's children are removed. It is not permitted to have
|
2. All the device's children are removed. It is not permitted to have
|
||||||
an active child device with a non-active parent. This means that
|
an active child device with a non-active parent. This means that
|
||||||
device_remove() is called for all the children recursively at this point.
|
device_remove() is called for all the children recursively at this point.
|
||||||
|
|
||||||
c. The device's remove() method is called. At this stage nothing has been
|
3. The device's remove() method is called. At this stage nothing has been
|
||||||
deallocated so platform data, private data and the uclass data will all
|
deallocated so platform data, private data and the uclass data will all
|
||||||
still be present. This is where the hardware can be shut down. It is
|
still be present. This is where the hardware can be shut down. It is
|
||||||
intended that the device be completely inactive at this point, For U-Boot
|
intended that the device be completely inactive at this point, For U-Boot
|
||||||
to be sure that no hardware is running, it should be enough to remove
|
to be sure that no hardware is running, it should be enough to remove
|
||||||
all devices.
|
all devices.
|
||||||
|
|
||||||
d. The device memory is freed (platform data, private data, uclass data,
|
4. The device memory is freed (platform data, private data, uclass data,
|
||||||
parent data).
|
parent data).
|
||||||
|
|
||||||
Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
|
Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
|
||||||
|
@ -764,25 +797,26 @@ remove it. This performs the probe steps in reverse:
|
||||||
be dynamically allocated, and thus needs to be deallocated during the
|
be dynamically allocated, and thus needs to be deallocated during the
|
||||||
remove() method, either:
|
remove() method, either:
|
||||||
|
|
||||||
1. if the platdata_auto_alloc_size is non-zero, the deallocation
|
- if the platdata_auto_alloc_size is non-zero, the deallocation
|
||||||
happens automatically within the driver model core; or
|
happens automatically within the driver model core; or
|
||||||
|
|
||||||
2. when platdata_auto_alloc_size is 0, both the allocation (in probe()
|
- when platdata_auto_alloc_size is 0, both the allocation (in probe()
|
||||||
or preferably ofdata_to_platdata()) and the deallocation in remove()
|
or preferably ofdata_to_platdata()) and the deallocation in remove()
|
||||||
are the responsibility of the driver author.
|
are the responsibility of the driver author.
|
||||||
|
|
||||||
e. The device sequence number is set to -1, meaning that it no longer
|
5. The device sequence number is set to -1, meaning that it no longer
|
||||||
has an allocated sequence. If the device is later reactivated and that
|
has an allocated sequence. If the device is later reactivated and that
|
||||||
sequence number is still free, it may well receive the name sequence
|
sequence number is still free, it may well receive the name sequence
|
||||||
number again. But from this point, the sequence number previously used
|
number again. But from this point, the sequence number previously used
|
||||||
by this device will no longer exist (think of SPI bus 2 being removed
|
by this device will no longer exist (think of SPI bus 2 being removed
|
||||||
and bus 2 is no longer available for use).
|
and bus 2 is no longer available for use).
|
||||||
|
|
||||||
f. The device is marked inactive. Note that it is still bound, so the
|
6. The device is marked inactive. Note that it is still bound, so the
|
||||||
device structure itself is not freed at this point. Should the device be
|
device structure itself is not freed at this point. Should the device be
|
||||||
activated again, then the cycle starts again at step 2 above.
|
activated again, then the cycle starts again at step 2 above.
|
||||||
|
|
||||||
5. Unbind stage
|
Unbind stage
|
||||||
|
^^^^^^^^^^^^
|
||||||
|
|
||||||
The device is unbound. This is the step that actually destroys the device.
|
The device is unbound. This is the step that actually destroys the device.
|
||||||
If a parent has children these will be destroyed first. After this point
|
If a parent has children these will be destroyed first. After this point
|
||||||
|
@ -805,24 +839,24 @@ For the record, this implementation uses a very similar approach to the
|
||||||
original patches, but makes at least the following changes:
|
original patches, but makes at least the following changes:
|
||||||
|
|
||||||
- Tried to aggressively remove boilerplate, so that for most drivers there
|
- Tried to aggressively remove boilerplate, so that for most drivers there
|
||||||
is little or no 'driver model' code to write.
|
is little or no 'driver model' code to write.
|
||||||
- Moved some data from code into data structure - e.g. store a pointer to
|
- Moved some data from code into data structure - e.g. store a pointer to
|
||||||
the driver operations structure in the driver, rather than passing it
|
the driver operations structure in the driver, rather than passing it
|
||||||
to the driver bind function.
|
to the driver bind function.
|
||||||
- Rename some structures to make them more similar to Linux (struct udevice
|
- Rename some structures to make them more similar to Linux (struct udevice
|
||||||
instead of struct instance, struct platdata, etc.)
|
instead of struct instance, struct platdata, etc.)
|
||||||
- Change the name 'core' to 'uclass', meaning U-Boot class. It seems that
|
- Change the name 'core' to 'uclass', meaning U-Boot class. It seems that
|
||||||
this concept relates to a class of drivers (or a subsystem). We shouldn't
|
this concept relates to a class of drivers (or a subsystem). We shouldn't
|
||||||
use 'class' since it is a C++ reserved word, so U-Boot class (uclass) seems
|
use 'class' since it is a C++ reserved word, so U-Boot class (uclass) seems
|
||||||
better than 'core'.
|
better than 'core'.
|
||||||
- Remove 'struct driver_instance' and just use a single 'struct udevice'.
|
- Remove 'struct driver_instance' and just use a single 'struct udevice'.
|
||||||
This removes a level of indirection that doesn't seem necessary.
|
This removes a level of indirection that doesn't seem necessary.
|
||||||
- Built in device tree support, to avoid the need for platdata
|
- Built in device tree support, to avoid the need for platdata
|
||||||
- Removed the concept of driver relocation, and just make it possible for
|
- Removed the concept of driver relocation, and just make it possible for
|
||||||
the new driver (created after relocation) to access the old driver data.
|
the new driver (created after relocation) to access the old driver data.
|
||||||
I feel that relocation is a very special case and will only apply to a few
|
I feel that relocation is a very special case and will only apply to a few
|
||||||
drivers, many of which can/will just re-init anyway. So the overhead of
|
drivers, many of which can/will just re-init anyway. So the overhead of
|
||||||
dealing with this might not be worth it.
|
dealing with this might not be worth it.
|
||||||
- Implemented a GPIO system, trying to keep it simple
|
- Implemented a GPIO system, trying to keep it simple
|
||||||
|
|
||||||
|
|
||||||
|
@ -903,12 +937,3 @@ change this to dynamic numbering, but then we would require some sort of
|
||||||
lookup service, perhaps searching by name. This is slightly less efficient
|
lookup service, perhaps searching by name. This is slightly less efficient
|
||||||
so has been left out for now. One small advantage of dynamic numbering might
|
so has been left out for now. One small advantage of dynamic numbering might
|
||||||
be fewer merge conflicts in uclass-id.h.
|
be fewer merge conflicts in uclass-id.h.
|
||||||
|
|
||||||
|
|
||||||
Simon Glass
|
|
||||||
sjg@chromium.org
|
|
||||||
April 2013
|
|
||||||
Updated 7-May-13
|
|
||||||
Updated 14-Jun-13
|
|
||||||
Updated 18-Oct-13
|
|
||||||
Updated 5-Nov-13
|
|
|
@ -5,3 +5,5 @@ Driver Model
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 2
|
:maxdepth: 2
|
||||||
|
|
||||||
|
design
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue