mirror of
https://github.com/Fishwaldo/bl_mcu_sdk.git
synced 2025-07-17 18:28:34 +00:00
[feat][nmsis] add nmsis component and nn,dsp demo
This commit is contained in:
parent
b2aada479b
commit
5d1126d0f0
989 changed files with 286224 additions and 0 deletions
116
examples/dsp/SVMFunctions_linearSVM/main.c
Normal file
116
examples/dsp/SVMFunctions_linearSVM/main.c
Normal file
|
@ -0,0 +1,116 @@
|
|||
#include "riscv_math.h"
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include "../common.h"
|
||||
|
||||
#include "../HelperFunctions/math_helper.c"
|
||||
#include "../HelperFunctions/ref_helper.c"
|
||||
|
||||
#include <stdio.h>
|
||||
#define DELTAF32 (0.05f)
|
||||
#define DELTAQ31 (63)
|
||||
#define DELTAQ15 (1)
|
||||
#define DELTAQ7 (1)
|
||||
|
||||
int test_flag_error = 0;
|
||||
|
||||
/*
|
||||
The linear SVM instance containing all parameters.
|
||||
Those parameters can be generated with the python library scikit-learn.
|
||||
*/
|
||||
riscv_svm_linear_instance_f32 params;
|
||||
|
||||
/*
|
||||
Parameters generated by a training of the SVM classifier
|
||||
using scikit-learn and some random input data.
|
||||
*/
|
||||
#define NB_SUPPORT_VECTORS 5
|
||||
|
||||
/*
|
||||
Dimension of the vector space. A vector is your feature.
|
||||
It could, for instance, be the pixels of a picture or the FFT of a signal.
|
||||
*/
|
||||
#define VECTOR_DIMENSION 2
|
||||
|
||||
const float32_t dualCoefficients[NB_SUPPORT_VECTORS]={-0.35546785f,-1.0f,-0.36854031f,1.0f,0.72400816f}; /* Dual coefficients */
|
||||
|
||||
const float32_t supportVectors[NB_SUPPORT_VECTORS*VECTOR_DIMENSION]={0.72036631f,1.03756244f,-0.38866912f,-0.12420514f,-2.2480224f,1.06849044f,-0.85917311f,0.1668838f,-0.15631996f,-0.82489954f}; /* Support vectors */
|
||||
|
||||
/*
|
||||
Class A is identified with value 0.
|
||||
Class B is identified with value 1.
|
||||
|
||||
This array is used by the SVM functions to do a conversion and ease the comparison
|
||||
with the Python code where different values could be used.
|
||||
*/
|
||||
const int32_t classes[2]={0,1};
|
||||
|
||||
int main()
|
||||
{
|
||||
int i;
|
||||
BENCH_INIT;
|
||||
/* Array of input data */
|
||||
float32_t in[VECTOR_DIMENSION];
|
||||
|
||||
/* Result of the classifier */
|
||||
int32_t result;
|
||||
|
||||
|
||||
/*
|
||||
Initialization of the SVM instance parameters.
|
||||
Additional parameters (intercept, degree, coef0 and gamma) are also coming from Python.
|
||||
*/
|
||||
riscv_svm_linear_init_f32(¶ms,
|
||||
NB_SUPPORT_VECTORS,
|
||||
VECTOR_DIMENSION,
|
||||
0.116755f, /* Intercept */
|
||||
dualCoefficients,
|
||||
supportVectors,
|
||||
classes
|
||||
);
|
||||
|
||||
|
||||
/*
|
||||
Input data.
|
||||
*/
|
||||
in[0] = 0.8f;
|
||||
in[1] = 1.1f;
|
||||
|
||||
BENCH_START(riscv_svm_linear_predict_f32);
|
||||
riscv_svm_linear_predict_f32(¶ms, in, &result);
|
||||
BENCH_END(riscv_svm_linear_predict_f32);
|
||||
|
||||
/* Result should be 0 : First class */
|
||||
if (result != 0) {
|
||||
BENCH_ERROR(riscv_svm_linear_predict_f32);
|
||||
printf("expect: %d, actual: %d\n", 0, result);
|
||||
test_flag_error = 1;
|
||||
}
|
||||
BENCH_STATUS(riscv_svm_linear_predict_f32);
|
||||
|
||||
/*
|
||||
Input data.
|
||||
*/
|
||||
in[0] = 3.0f;
|
||||
in[1] = -2.0f;
|
||||
|
||||
riscv_svm_linear_predict_f32(¶ms, in, &result);
|
||||
|
||||
/* Result should be 1 : Second class */
|
||||
if (result != 1) {
|
||||
BENCH_ERROR(riscv_svm_linear_predict_f32);
|
||||
printf("expect: %d, actual: %d\n", 1, result);
|
||||
test_flag_error = 1;
|
||||
}
|
||||
BENCH_STATUS(riscv_svm_linear_predict_f32);
|
||||
|
||||
|
||||
BENCH_FINISH;
|
||||
if (test_flag_error) {
|
||||
printf("test error apprears, please recheck.\n");
|
||||
return 1;
|
||||
} else {
|
||||
printf("all test are passed. Well done!\n");
|
||||
}
|
||||
return 0;
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue